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Abstract

One of the interesting topics in the networking area is so-called ”network neu-
trality”. Many Internet Service Providers (ISPs) want to restrict bandwidth-hungry
applications that can hurt other applications in the network or want to control ap-
plications, such as VoIP, that reduce ISPs’ ability to profit from competing services
of their own. Multiple research projects have been done and a number of mea-
surement tools have been developed in order to investigate how different traffic
regulation policies are deployed by ISPs. However, the situation with traffic shap-
ing in mobile networks is still unexplored, mainly because of a lack of a proper
measurement infrastructure for mobile devices. In this thesis, a new measurement
tool for Android-powered mobile devices is presented, which is suitable for detect-
ing the presence of content-based traffic shaping on mobile networks. A series of
experiments on mobile networks has been done using the new measurement tool.
As it turned out, most tested mobile providers do not block SIP and VoIP traffic,
even despite the fact they claim that VoIP is not supported in their mobile networks.
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Chapter 1

Introduction

The Internet is a large distributed system that involves the network infrastruc-
ture, the hosts it connects, the traffic generated by the hosts and the protocols that
govern the transmission of packets between hosts across the network. Proper mon-
itoring, performance assessment, maintenance, and troubleshooting of networks
play a fundamental role in assuring the desired quality level of the offered ser-
vice. Performance critical applications already exist, from financial transactions
to streaming multimedia, which require some Quality of Service quantities to be
measured as accurately as possible. Plenty of tools have been developed to perform
active and passive Internet measurement tests and to retrieve useful information
about the current network state.

Nowadays, the number of mobile devices, which can connect to the Internet,
and the amount of mobile traffic are increasing rapidly. During the last couple of
years, so-called smartphone devices became very popular with the users around
the world. There is no standard definition of the term smartphone across the indus-
try. However, the popular explanation defines a smartphone as a device that allows
users to make telephone calls, and also provides the functions of a personal digital
assistants (PDAs), portable media players, compact digital cameras and GPS nav-
igation units [1]. In addition, the following features are typical for smartphones
[2]:

– Operating System: a smartphone is based on an operating system that al-
lows it to run third-party applications;

– Software: while almost all the cell phones include some sort of software, a
smartphone provides an advanced application programmer interfaces (APIs)
for running third-party applications, which allow those applications to have
better integration with the smartphone’s operating system and hardware (e.g.,
interaction with video cameras, different built-in sensors, GPS, gaming con-
trols, etc.). This allows to run more complex applications which provide
additional functionality;
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– Internet Access: smartphones can access the Internet via Wi-Fi and mobile
broadband;

– Keyboard: smartphones usually include a QWERTY keyboard which can
be hardware or software (users type on a touch screen).

– Messaging: All cell phones can send and receive text messages, but what
sets a smartphone apart is its handling of e-mail. A smartphone can sync
with multiple e-mail accounts.

The smartphone users become active members of the Internet community. The
users of mobile devices use various services such as web surfing, email, video and
audio streaming. Network traffic generated by mobile devices is increasing at this
very moment along with the number of smartphone users and mobile services. In
our opinion, being able to run network measurement tests from smartphone devices
in order to discover whether provided connectivity performance satisfies users ex-
pectations is a very useful ability to end-users. However, the existing network
measurement tools for mobile platforms (Android, iPhone, Windows Phone OS)
mostly allow only to obtain the basic network information (e.g., local and global
IP addresses of the mobile device) and to measure the network performance (e.g.,
downlink/uplink throughput, latency, round trip time).

One of the interesting topics is the so-called ”network neutrality”. Many In-
ternet Service Providers (ISPs) want to restrict bandwidth-hungry applications that
can hurt other applications in the network. Some also want to control applications,
such as VoIP, that reduce ISPs ability to profit from competing services of their
own. In contrast, some other content providers are against traffic differentiation
because it gives the ISPs arbitrary control over the quality of service experienced
by users. Many research projects have been done [3][4][5] and a number of mea-
surement tools [6][7][8] have been developed in order to investigate how the dif-
ferent traffic shaping policies are deployed by ISPs. However, the situation with
traffic shaping in mobile networks is still unexplored, mainly because of a lack of
a proper measurement infrastructure for mobile devices.

Thereby, during this master thesis project, we focus on developing a measure-
ment tool suitable for running active Internet measurements on Android-powered
mobile devices. The main goal of our Master Thesis project is to develop an appli-
cation for an Android Operating System (OS) [9] that helps to reveal the presence
of traffic differentiation based on deep-packet inspection techniques. The solution
is based on a client-server architecture. Client connects to a measurement server
to download and run various tests. During each test, the server and the client com-
ponents exchange messages that carry application-level data, which conforms to
the application protocol that we want to test. This data is carefully constructed to
detect traffic differentiation along the path. The client component can be installed
on any Android-powered smartphone. And the server component runs on a Linux
machine, which has a static global IP address. In order to distribute the client com-
ponent among users, it has been published on Google Play [10] digital-distribution
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multimedia-content service.
In addition, we evaluate the results obtained from the experiments that have

been made on mobile networks in order to learn how and to which extent content-
based traffic differentiation policies are deployed by different mobile service provi-
ders. When we talk about mobile networks, we can speculate that mobile network
operators might want to manipulate on the VoIP application’s traffic performance.
VoIP applications for smartphone devices (Skype, Viber, Sipgate, MobileVoip) ac-
tually are competitors for mobile service operators. To reduce financial losses
it is tempting to restrict the performance of traffic flows that carry VoIP data.
In fact, many mobile Internet providers (e.g., NettoKOM, O2, Congstar) claim
[11][12][13] that they do not support VoIP and Peer-to-Peer traffic on their net-
works.

By analyzing the obtained measurement results, we will try to answer the fol-
lowing questions about the presence of the content-based traffic shaping in mobile
networks:

a) Do mobile Internet Service Providers apply traffic shaping techniques based
on the deep-packet inspection in order to restrict the performance of ”un-
wanted” applications. Does it depend on the type of the network? For exam-
ple, the same mobile operator provides Internet access using different net-
work types (e.g. HSPA, EGDE). Thereby, it is interesting to know whether
and how content-based traffic differentiation policies differ on different net-
work types within the same provider.

b) Does the performance of certain application protocols in mobile networks
depend on the time of the day? Can we observe the difference in applica-
tions’ performances between day time and night time? Do mobile operators
perform application-depend traffic shaping policies during the peak hours,
when the number of concurrent users is larger than usually?

c) Most of mobile providers reduce the maximum network bandwidth for those
users who exceeded the monthly data download limit defined by a contract.
Therefore, we will try to determine whether the mobile operators perform
content-based traffic shaping in case when the user has crossed that data
limit.
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Chapter 2

State of the Art

2.1 Network Measurements Overview

Internet measurements techniques play an important role for network operators
and providers. They are an efficient and robust way to determine how well a net-
work performs and what kind of Quality of Service guarantees Internet providers
are able to offer to their customers. By gathering data from the measurement tests,
network providers can retrieve useful information which lately can be used for [14]:

– Performance adjustment: identifying and reducing bottlenecks, balancing
resource use, etc.

– Troubleshooting: identifying and repairing faults end misbehavior

– Planning: predicting the scale and required hardware resources

– Characterization of traffic for providing data for modeling and simulation

– Understanding and controlling complexity: understanding the interaction be-
tween components of the network and to confirm that functioning, innova-
tion and new technologies perform as predicted and required

Network measurement methods can fall into two categories depending on the
way how data has been collected: active and passive measurements. These two
types of measurements generally focus on different aspects of network behavior.

In passive measurements, routers or other hosts measure existing traffic pass-
ing through or destined to them. Typically data is collected in three ways: polling
management information base (MIB) data from routers, packet monitoring and
flow monitoring. Passive network measurements are useful in order to learn the
network topology, analyze the network workload or measure some end-to-end per-
formance metrics like packet loss and delay [15].

Unlike the passive methods, in active networking measurements we addition-
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ally inject probe packets into the network and measure network characteristics at
different points. The key idea is that we know the initial structure of the probe
traffic, and so by measuring how it is affected by the portion of the network it tra-
verses, network conditions can be inferred. Usually, by active measurements we
mean end-to-end measurements, when the probes are observed only at the origin
and destination hosts, so there is no need to deploy additional monitors in between.
The drawback of probing is that injected packets may possibly disturb the normal
traffic flow. This is why active measurements need to be carefully planned before
execution and usually the bandwidth reserved for the probe packets is limited. Typ-
ically, active measurements are used in order to determine network performance
characteristics such as latency, one-way or two-way packet delay, round-trip time,
stream or upload speed or hosts availability.

In addition, combining active and passive measurements is called hybrid mea-
surement. An example of a hybrid measurement could be a scenario where active
probes are sent over a network and their progress is monitored by passive means
during the measurement. This type of arrangement allows the measurer to track
the path of the probes and record the intermediate and end-to-end delays.

The Internet performance measurements have a long history, and during the last
30 years plenty of methodologies and techniques have been proposed and a large
number of measurement tools have been developed. Thus, we can distinguish sev-
eral categories of network measurement types accordingly to their intentions: net-
work performance measurements, routing and topology measurements, audio and
video streaming characteristic measurements, measurements in case of multicast
communication, application and policy measurements.

2.1.1 Performance Measurements

One of the goals of Internet measurement is to determine the network perfor-
mance. For example, some applications benefit from knowing the amount of band-
width available on a network path, so that they can adapt their sending rate and
share the bandwidth more fairly. Performance measurements focuse on the analy-
sis of end-to-end behavior and on the diagnosis of network problems. These efforts
typically include the collection of end-to-end packet loss, delay and round trip time
statistics, most often performed by injecting test traffic into network, thus active
measurements techniques are usually used in this case.

The most common metrics typically measured are latency, packet loss, through-
put, utilization and availability. In order to standardize the networking measure-
ment metrics to make the comparison of obtained results from different sources
possible, the Internet Engineering Task Force’s (IETF) IP Performance Metrics
Working Group (IPPM) develops standards, called Requests For Comments (RFC),
for the measurement of network performance. By July 2012 the following metrics
had already been defined by RFC documents:
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– IPPM Metrics for Measuring Connectivity (RFC 2678)

– A One-way Delay Metric for IPPM (RFC 2679)

– A One-way Packet Loss Metric for IPPM (RFC 2680)

– A Round-trip Delay Metric for IPPM (RFC 2681)

– A Framework for Defining Empirical Bulk Transfer Capacity Metrics (RFC
3148)

– One-way Loss Pattern Sample Metrics (RFC 3357)

– IP Packet Delay Variation Metric for IPPM (RFC 3393)

Determining the current network performance presents a quite mature field of
interests, and a large number of measurement techniques have been proposed. The
mechanism of determining the Maximum Transmission Unit (MTU) is defined in
RFC 1191 [16]. The core idea is to use the IP header’s ”Don’t Fragment” bit to
discover the Path MTU (PMTU). A source node first assumes that the PMTU is the
MTU of the first hop. If a router on the path notices that the datagram cannot be
sent to a next hop without fragmentation, the router drops the packet and sends an
ICMP Destination Unreachable message back to the source node. When a sender
node receives these messages, it automatically reduces the size of the packets and
thus the PMTU until it receives no more error messages.

R. Prasad, C. Dovrolis, M. Murray, K. Claffy in [17] provide a detailed review
of existent methods to determine the available network bandwidth. There are four
major techniques that are used:

1. The Variable Packet Size (VPS) technique attempts to estimate the capacity
of each link along a path. VPS does this by sending different sized probe
packets from the source node to all nodes along the path and measuring the
round-trip delay time (RTT) to each hop as a function of packet size.

2. The Packet Pair/Train Dispersion (PPTD) technique sends multiple identical
(in terms of size) packets back-to-back and measure the dispersion of the
packets at the receiver side. The narrow link on the path causes an increase
in the dispersion of the packets, so the available bandwidth can be detected.

3. The Self-Loading Periodic Streams (SLoPS) technique is able to estimate the
available bandwidth. It is based on principle of sending the sequence of
equal sized packets at an increasing rate and to monitor the one-way delay
variations experienced by the packets.

4. The Trains of Packet Pairs (TOPP) technique is much like the SLoPS method
but it uses different packet stream patterns and focuses on reducing measure-
ment latency. In addition, instead of just estimating the available bandwidth
it is also able to estimate the tight link on the path.
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Figure 2.1: OWAMP roles distribution

The One Way Active Measurement Protocol (OWAMP) defined in RFC 4656
[18] provides a high precision mechanism to measure one-way delay and latency
in the Internet. Additional design goals of OWAMP include: being hard to detect
and manipulate, security, logical separation of control and test functionality, and
support for small test packets. OWAMP also supports an encrypted mode that fur-
ther obscures the traffic and makes it impossible to alter timestamps undetectably.
Technically OWAMP consists of two inter-related protocols: OWAMP-Control and
OWAMP-Test. OWAMP-Control is used to initiate, start, and stop test sessions and
to fetch their results, whereas OWAMP-Test is used to exchange test packets be-
tween two measurement nodes. The OWAMP architecture separates different roles
in order to be more flexible on scheduling and executing performance measure-
ments (see Figure 2.1).

– Session-Sender: the sending host of the test session

– Session-Receiver: the receiving host of the test session

– Server: manages the test sessions, configures per-session states in the session
endpoints, and returns the results of a test session

– Control-Client: initiates requests for test sessions, triggers the start or termi-
nation of test sessions

– Fetch-Client: initiates requests to fetch the results of completed test sessions

The principle of OWAMP is quite simple: the test packets are sent from the
sender to the receiver and the packet’s timestamps (send and receive times), se-
quence numbers and TTLs are recorded on arrival. As OWAMP measures the
one-way delay by comparing the timestamps on the sender’s and receiver’s end, it
is clear that the clocks of both the sender and the receiver need to be synchronized.

Similar to OWAMP, the Two-way Active Measurement Protocol (TWAMP)
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Figure 2.2: TWAMP roles distribution

[19] has been developed in order to measure two-way packet delay and latency
characteristics. The TWAMP provides a different role model, the Session-Receiver
is replaced by the Session-Reflector which is capable of creating and sending test
packets when it receives test packets from a Session-Sender. Unlike the Session-
Receiver, it doesn’t collect any information from test packets as round-trip delay
information is available only after the reflected test packet has been received by
the Session-Sender. Another exception is that the Server component doesn’t have
the capability to return the results of a test session as the Session-Reflector it is
associated with doesn’t collect any results. Consequently, this means that there is
no need for a Fetch-Client and thus it does not exists in the TWAMP architecture
(see Figure 2.2).

In addition, plenty of network performance measurement tools have been im-
plemented. The most popular are: iperf, pathload, traceroute and ping. On the
CAIDA [20] web page, a rich collection of performance measurement tools with
their descriptions can be found.

2.1.2 Routing and Topologies Measurements

Another goal of Internet measurements is to learn about the network topology
and traffic routes from the source to destination hosts. The knowledge about routes
is extremely helpful for understanding the current situation in a network and for
troubleshooting. For instance, in some cases there might be a fault in the network
that causes traffic to be routed the wrong way. Generating an artificial traffic flow
through the network and inspecting its behavior can help to troubleshoot routing
faults. Running passive measurements and observing data flows can also help to
detect bottlenecks in the network configuration.

The global infrastructure of the Internet is continuously changing. It is a really
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challenging task to track and visualize this complex system. The goal of topology
measurements is to collect information on connectivity, which backbone node is
connected to which, and to determine their geographical locations. Routing mea-
surements provide insight into the dynamics of routing protocols and routing table
updates. These are of great importance as the reliability and robustness of the In-
ternet depends on the stability and efficiency of routing.

The Cooperative Association of Internet Data Analysis (CAIDA) [20] used the
skitter [21] tool more that 10 years to monitor the Internet’s topology. Skitter al-
lows to record each hop from a source to many destinations, collect round trip time
(RTT) along with path (hop) data, and collect the data to visualize the network con-
nectivity by probing the paths to many destination IP addresses spread throughout
the IPv4 address space.

On February 2008, CAIDA deactivated skitter data collection and transitioned
to the measurement infrastructure named Archipelago [22], which provides a more
powerful and flexible IPv4 and IPv6 traceroute active measurement tool. The initial
focus of Archipelago is coordinated large-scale traceroute-based topology mea-
surements using a process called team probing. In team probing, monitors are
grouped into teams and dynamically divide up the measurement work among team
members.

NetConfigs.Com [23] provides to ISPs a suite of tools to verify their peering
policies, identify errors, and apply (or request) policy changes accordingly. Peer-
ing data (IPv4 prefixes and AS-paths) is collected from around the world and pro-
cessed into a global-view database against which AS reports and BGP tools can be
run.

LinkRank [24] is a graphical tool for visualizing BGP routing changes. This tool
can be used by BGP operators to understand routing dynamics as well as by peo-
ple who want to learn more about BGP. LinkRank summarizes megabytes of BGP
updates received from collection points and produces easy to understand graphs
indicating the segments of routes affected.

Similar functionality is provided by the BGPlay [25] tool. BGPlay is a Java ap-
plication which displays animated graphs of the routing activity of a certain prefix
within a specified time interval. Its graphical nature makes it much easier to un-
derstand how BGP updates affect the routing of a specific prefix than by analyzing
the updates themselves.

The iffinder [26] tool allows to discover which IP addresses belong to interfaces
on the same router.

2.1.3 Measurement of Video and Audio Streaming Performance

Internet active measurements also might be useful in more application specific
scenarios, for example in measuring channel characteristics in case of voice and
video data streaming. Multimedia streaming is a real time application, as a result
one of the the main challenges are optimizing video quality by active measure-
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ments of links and enhancing the overall Quality of Service (QoS). The QoS itself
is a complex function which depends on many factors including the communi-
cation channel characteristics like throughput, available bandwidth, jitter, packet
delay and loss. So, it is very important to measure those characteristics precisely,
in order to dynamically adopt the data packets streaming to achieve the best Qual-
ity of Service.

Mubashar Mushtaq and Toufik Ahmed in [27] presented a solution based on
active measurement of RTT values, which allows to perform smooth quality adap-
tation for streaming of IP packet video. They used a receiver-centric mechanism
i.e., the receiver peer is in charge for selection of active peers and it also coordi-
nates the overall streaming mechanism by switching from one congested node to
another present in the subset of candidate peers offering better QoS.

Reza Rejaie and Antonio Ortega have proposed a framework PALS [28]. PALS
is a receiver-driven framework for quality adaptive playback of encoded media
streaming, where a receiver coordinates delivery of layer encoded stream from
multiple senders. A peer selection criterion has been proposed based on the overall
effective throughput. There is no information available in the start so initial peers
are selected on random basis.

Prasad Calyam et al, in [29], describe common end-to-end performance prob-
lems in the H.323 protocol, that defines how real-time multimedia communica-
tions, such as audio and video-conferencing, can be exchanged on packet-switched
networks (Internet). Furthermore they developed the H.323 Beacon tool that can
be used to measure, monitor and qualify the performance of an H.323 video con-
ference session. It can help an end-user/network engineer operator, as a debugging
tool by providing H.323-protocol specific evidence and other information neces-
sary to troubleshoot H.323 application performance problems in the network.

Qian Zhang, Wenwu Zhu and Ya-Qin Zhang in [30] designed an end-to-end
distortion-minimized resource allocation scheme for scalable video transmission
over 3G wireless network using channel-adaptive hybrid unequal error protection
(UEP) and delay-constrained automatic retransmission request (ARQ) error con-
trol schemes. They presented dynamic measurements of error rate and throughput
for 3G wireless networks, which were used for resource allocation between source
and channel coding.

M. Lundeval, B. Olin and others in [31] evaluate different scheduling algorithms
for video streaming over High-Speed Downlink Packet Access (HSDPA) networks.
The HSDPA communication protocol improves downlink performance on mobile
networks and is currently being deployed in networks around the world. The Au-
thors consider performance aspects of different scheduling algorithms with the aim
of providing QoS for streaming applications in a scenario with mixed interactive
(web browsing) and streaming services.
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2.1.4 Multicast Measurements

Another type of network measurements that we can distinguish are measure-
ments in case of multicast communication. In this scenario, multicast datagrams
are delivered to all members of their destination host group, which changes dy-
namically during the time. That means that hosts may join and leave the group at
any time, and usually there is no restrictions on the location of members in the host
group. The forwarding of IP datagram is handled by so-called ”multicast routers”.
The structure of data flow shapes a tree and the data flows from the root (usually
source of the data) to the leaves. So, the multicast data monitoring becomes a chal-
lenge, because it involves monitoring the distribution trees for each of the senders
and all branches of each tree.

One more important factor, that makes multicast measurements difficult is the
lack of information about receivers; every node that sends data to a multicast group
only knows about the nodes from the next level of the tree. Given these charac-
teristics of multicast communication, the set of measurement metrics as well as
measurement methodology is different than the in unicast case. Instead of measur-
ing a single value that is a channel characteristic, it makes more sense to measure
the set of the specific values between the source and each receiver. The following
metrics can be used to describe the quality of multicast communication channel:

– The set of the one way delay values between the source and each receiver

– The set of the packet loss results between the source and each receiver

– The number of time the measurement packet is repeated by a node (for
routers)

T. Saadawi in [32] extends unicast resource measurement techniques to multi-
cast environments to estimate bottleneck link bandwidth. They also introduced a
novel way to measure end-to-end queuing delay by using a pair of packets with
different priorities. The major benefit of the proposed method is that it doesn’t re-
quire time synchronization and does not need to communicate with core routers.

Multicast monitoring tools can be divided into several categories: RTP mon-
itoring tools, multicast routing diagnostics, multicast traceroute tools and multi-
cast backbone (MBONE) mapping tools. Tools from the first group (RTP tools) are
used to monitor the quality of the data transmission and popularity of individual
sessions: MHealth [33] is a graphical, near real-time multicast monitoring tool.
By using a combination of application level protocol data about group participants,
and a multicast route tracing tool for topology information, MHealth is able to dis-
cover and display the full network tree distribution and delivery quality. MHealth
also provides data logging functionality for the purpose of isolating and analyzing
network faults. Logs can be analyzed to provide information such as receiver lists
over time, route histories and changes, and the location, duration, and frequency
of loss. Mlisten [34] was developed for the collection and processing of MBONE
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membership information. The tool can be used to generate information about join
and leave statistics, connection time characteristics, and multicast tree size and
characteristic. RTPMon [35] allows network administrators or support personnel
to monitor listenership as well as session quality experienced by subscribers. The
tool also facilitates tracing the cause of problems resulting in quality degradation.
To accomplish this task, RTPMon summarizes and analyzes information provided
by RTCP source and receiver reports.

Multicast router diagnostics are used to collect information about the state of
multicast routers: mrinfo [36] displays information about a multicast router to dis-
cover the router’s physical and virtual interfaces. Routes are queried for their ver-
sion number, and if this query is successful, for their metrics, thresholds and flags.
Mantra [37] is a tool for monitoring the multicast traffic at the router level. It pe-
riodically collected multicast routing information (e.g., MSDP and MBGP tables)
from multicast-enabled backbone routers in the Internet. Then Mantra processed
this information to generate useful statistics about the deployment and availabil-
ity of multicast across the inter-domain. The information collected by Mantra
has helped researchers and network administrators understand multicast operation,
routing protocol interaction and evolution of the infrastructure.

Multicast traceroute tools are used to trace the path between the sender and des-
tinations. One of the most popular tools is Mtrace [38]. The Mtrace tool is used to
return a snapshot of the set of links used to connect a particular source with a par-
ticular destination. Additional Mtrace options allow a user to measure the number
of multicast packets flowing across each hop.

MBONE mapping tools are used to map out the topology for a particular group.
These tools can show the topology at the level of individual systems, or at the level
of autonomous system connections. Mrtree [39] uses a combination of IGMP and
SNMP queries to discover the actual and potential multicast (sub)trees for a given
source and group, rooted at a given router. An actual tree, discovered using the
multicast routing MIB, consists of routers which are currently forwarding multi-
cast traffic to a group from a given source.

2.1.5 Application and Policy Measurements

In the real world the traffic management policies usually are driven by business
interests (depending on peering and data transition agreements between providers),
and many ISPs do not publicly disclose the details of their middlebox deployments.
Those middleboxes, such as firewalls, blockers and traffic shapers are used to mon-
itor and manipulate the data flown through. To achieve more revenue, ISPs may use
different techniques, for example the traffic shaping to optimize the performance.

Traffic shaping is a network management technique which delays some or all
datagrams to bring them into compliance with a desired traffic profile [40], and it
can be used to control the volume of traffic being sent into a network in a speci-
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fied period, or the maximum rate at which traffic is sent. From the one side, using
intelligent traffic shaping schemes may guarantee a particular Quality of Service
for an applications, and it can help IPSs optimize the use of their network, e.g.,
to avoid the congestive collapse in the Wi-Fi based protocols. However, from the
end-user perspective view, using this technique means that data which is sent by
a user into the network might be artificially delayed by its ISP, which naturally
is not what users expect from their providers. Recently, it has been reported that
certain access ISPs [41] are blocking their customers from uploading data using
the popular BitTorrent protocol. The ISPs were found to tear down TCP connec-
tions, identified as BitTorrent flows, by sending forged TCP reset packets to the
end hosts. Furthermore, not only the P2P traffic can be blocked, but other data like
flash video, email or SSH transfer might be restricted as well, depending on the
provider’s policy configuration.

To differentiate between flows of different types, i.e., belonging to different ap-
plications, ISPs must distinguish the packets of one flow from those of other flows.
This can be done by examining one of the following [3]:

– The IP header. The source or destination addresses can determine how an
ISP treats a flow. For example, universities routinely rate-limit only traffic
that is going to or coming from their student dorms.

– The transport protocol header. ISPs can use port numbers or other transport
protocol identifiers to determine a flow’s treatment. For example, P2P traffic
is sometimes identified based on its port numbers.

– The packet payload. ISPs can use deep-packet inspection (DPI) to identify
the application generating a packet. For example, ISPs look for P2P protocol
messages in packet payload to rate-limit the traffic of P2P applications, such
as BitTorrent.

In addition to features of a flow itself, an ISP may use other criteria to determine
whether to differentiate. Some of these include:

– Time of day. An ISP may differentiate only during peak hours.

– Network load. An ISP may differentiate on a link only when the network
load on that link is high.

– User behavior. An ISP may differentiate only against users with heavy band-
width usage.

There are a number of ways how an ISP can treat one class of packets differ-
ently:

– Blocking. One form of differentiation is to terminate a flow, either by block-
ing its packets or by injecting a connection termination message (e.g., send-
ing a TCP FIN or TCP RST packet).
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– Deprioritizing. Routers can use multiple priority queues when forwarding
packets. ISPs can use this mechanism to assign differentiated flows to lower
priority queues and to limit the throughput of certain classes.

– Packet dropping. Packets of a flow can be dropped either using a fixed or
variable drop rate.

– Modifying TCP advertised window size. ISPs can lower the advertised win-
dow size of a TCP flow, prompting a sender to slow down.

– Application-level mechanisms. ISPs can control an application’s behavior by
modifying its protocol messages. For example, transparent proxies [42] can
redirect HTTP or P2P flows to alternate content servers.

As a result, several techniques were developed, based on the Internet active
and passive measurements, which allow to detect if ISPs use traffic blocking or
traffic shaping. Marcel Dischinger et al in [4] present a large-scale measurement
study of BitTorrent traffic blocking by ISPs. They designed and developed a tool
called BTTest, which enables end users to test for blocking on their own access
links. BTTest emulates BitTorrent flows between end hosts and test servers, using
the standard BitTorrent protocol and identifies the traffic blocking based on flow
characteristics.

Another tool that has been designed and implemented by Marcel Dischinger,
Massimiliano Marcon and others is called Glasnost [3]. Glasnost is a tool that
attempts to detect whether your Internet access provider is performing application-
specific traffic shaping, It allows you to test if your ISP is throttling or blocking
email, HTTP or SSH transfer, Flash video, and P2P applications including BitTor-
rent, eMule and Gnutella.

NetPolice [6] (previously named NVLens [43]) compares the aggregate loss
rates of different flows to infer the presence of ”network neutrality violations” in
backbone ISPs.

NANO [5] uses causal inference to infer the presence of traffic performance
degradation. NANO relies on a vast amount of passively collected traces from
many users to infer if traversing a particular ISP leads to poorer performance for
certain kinds of traffic. It uses active measurements and a simple head-to-head
comparison of two flows to quickly inform users whether they face traffic differen-
tiation – without relying on other users.

ShaperProbe [7] also detects whether traffic shaping is used in the upload or
download directions, and in that case that it is used, ShaperProbe reports the shap-
ing rate and the ”maximum burst size” before shaping begins.

DiffProbe [8] detects whether traffic differentiation based on active queue man-
agement (AQM), such as RED and weighted fair queueing, is deployed in the net-
work path. DiffProbe can detect differentiation that leads to small increase in la-
tency and can identify the AQM technique used.

Neubot [44] runs in the background, as a daemon, and periodically performs
tests to measure network performance and application-specific throttling. Cur-
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rently, two tests are implemented: one that emulates HTTP flows and another that
emulates BitTorrent flows.

2.2 Internet Measurement Infrastructures

Another important aspect of network measurements is the problem of sharing
large Internet measurements datasets between different research projects. While
standalone tools that have been developed recently allow to perform accurate mea-
surements to test network performance, which is important to the network admin-
istrators, researchers need to collect their own data, and perhaps even develop their
own measurement tools before investigating a given question. Furthermore, a net-
work operators also might be interested in obtaining real-time data in order to
optimize their network infrastructure, since the data-heavy multimedia network
application becomes more and more popular. In an effort to make the gathering
of the measurement data in a large scale easier and attract more participants (in-
dividual persons, as well as institutions) involved into the measurement process,
several projects have been founded by different groups of researchers, that provide
a well-designed infrastructure for performing broadband connection measurement
and collecting the results.

2.2.1 M-LAB

Measurement Lab (M-Lab) [45] is an open, distributed server platform for re-
searchers to develop, test, and deploy new active measurement tools. The goal of
M-Lab is to advance network research and empower the public with useful infor-
mation about their broadband connections. Currently, instead of focusing on the
Internet core, M-Lab focuses on measuring the end-to-end performance and on
the characteristics of broadband access links. Measurements capture basic opera-
tional characteristics (e.g., TCP throughput, available bandwidth), advanced host
diagnostics (e.g., misconfiguration, small socket buffer sizes), and ISP traffic man-
agement practices (e.g., BitTorrent blocking, traffic shaping). M-Lab is helping
build a common pool of network measurement data, removing the need for every
research project to collect its own data and facilitating cross-sample analyses. All
data collected through M-Lab is made publicly available and placed in the public
domain.

The M-Lab platform uses a number of purpose-built and well-connected mea-
surement servers in strategic locations around the globe. Currently, a total of 45
servers are operational across 15 geographically distributed sites in the United
States and Europe. Each tool is allocated dedicated resources on the M-Lab plat-
form to facilitate accurate measurements. Server-side tools are openly licensed
to allow third-parties to develop their own client-side measurement software. Re-
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searchers and network scientists that are interested in running their tools on the
M-Lab platform can contact M-Lab’s steering committee, which coordinates re-
search on the M-Lab platform. Once granted access, researchers can login and run
their experiments on M-Lab servers. Using the M-LAB platform brings benefits to
researchers, since it helps to:

– expose measurement tools and systems to a large number of users, since it is
usually quite difficult to deploy a measurement tool to many highly available,
well-connected servers around the world;

– validate analytical and simulation models with data from real-world Internet
paths; instead of making assumptions about the available capacity, delays,
losses, presence of traffic shapers, buffer sizes, etc., an analytical or simu-
lation model can be grounded on measurements derived from the available
M-Lab data;

– share and analyze datasets collected on M-Lab;

– avoid the administrative and operational overhead involved in managing a
large-scale distributed server platform.

2.2.2 SamKnows

SamKnows [46] provides a broadband performance measurement platform based
on special hardware devices called Whiteboxes. SamKnows Whiteboxes are con-
sumer grade, home Wi-Fi routes with additional testing software integrated, that
can be deployed onto the home network in order to test and report a range of met-
rics:

– Web browsing: the total time taken to fetch a page and all of its resources
from a popular website;

– Video streaming: the initial time to buffer, the number of buffer under-runs
and the total time for buffer delays;

– Voice over IP: upstream packet loss, downstream packet loss, upstream jitter,
downstream jitter, round trip latency;

– Downstream speed/Upload speed: throughput in Megabits per second utilis-
ing three concurrent TCP connections;

– UDP latency: average round trip time of a series of randomly transmitted
UDP packets;

– UDP packet loss: percentage of UDP packets lost from latency test;

– Consumption: volume of data downloaded and uploaded by the panellist;

– Availability: the total time the connection was deemed unavailable;
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– DNS resolution: the time taken for the ISP’s recursive DNS resolver to return
an A record for a popular website domain name;

– ICMP latency: the round trip of five regularity spaced and schedule ICMP
packets;

– ICMP packet loss: the percentage of packets lost in the ICMP latency test.

The Whitebox can operate in a two modes: operate as a router, replacing the
user’s existing Ethernet router (in this case, all wired and wireless devices should
connect through the Whitebox) or operate as an Ethernet bridge, co-existing with
an existing router (all wired devices should connect through the Whitebox, while
the wireless devices should continue to connect to their existing routers).

The SamKnows Whiteboxes on panellists’ home networks execute a series of
software tests over their broadband Internet connection. A test cycle on the White-
box occurs once an hour every hour (24 times per day). The timing of the test-
ing is randomized per Whitebox. Once a testing cycle is complete, the results of
these tests are reported securely up (over SSL) to a hosted backend infrastructure.
Whitebox communicates with a backend via the special gateway, called the data
collection service (DCS). The collected data is available to the end-users via the
web-based reporting system.

2.2.3 RIPE Atlas

The RIPE Atlas project [47] is a distributed Internet measurement network con-
sisting of thousands, potentially up to tens of thousand of measurements nodes,
also called active probes, placed all around the Internet, all connected to a control-
ling framework. The main goal of RIPE Atlas is to take active measurements in a
coordinated fashion, thereby supplying more measurement data for the benefit of
the research community, and in general to the Internet community.

The vantage points in RIPE Atlas are called probes. They are tiny hardware de-
vices capable of executing active measurements. They can be deployed anywhere:
in residential settings, corporate networks and ISP infrastructures. Probes require
virtually no configuration, and they execute their measurement tasks completely
autonomously.

The probes are controlled by a hierarchical infrastructure. This infrastructure
takes care of coordinating measurements, collecting and visualizing results, inter-
acting with users, etc. Currently the RIPE Atlas measurement system executes
built-in measurements, such as ICMP ping to pre-defined destinations (measuring
the round trip time), traceroutes to these destinations, current uptime, uptime his-
tory and total uptime, DNS (anycast) measurements, where for each root name
server, they try to determine which instance of the name servers the probe ends up
connecting to. The measurement system takes care about scheduling such measure-
ments, finding the appropriate probes to use, collecting and visualizing the results.
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The measurement data generated by the system is recorded and kept as part of the
RIPE NCC Internet measurement data set, which is available to researchers and
other interested parties for further analysis. Furthermore, in the near future RIPE
Atlas will provide the possibility to perform user defined network measurements.

2.3 Network Measurements for Mobile Platforms

Being able to run Internet measurement tests from mobile devices can bring
additional benefits, to all interested participants such as network administrators,
service providers, researchers or end-users. In our opinion there are several reasons
which makes smartphones good candidates for running measurements on them:

1. Smartphones became extremely popular during last couple of years, and the
number of devices that have been activated is increasing daily. For example,
in March 2011, Apple Inc. reported [48] about more that 100 million iPhones
have been sold in the world, and in November of 2011, the total number of
Android-based devices (smartphones and tablets) that have been activated
exceeded 200 million [49]. So the smartphones market is very developed
and mature right now.

2. Deploying a special network measurement application on smartphone, turns
it to some kind of a ”probing host” (like SamKnows Whitebox or RIPE Atlas
probe). And since there is no need to deploy additional hardware compo-
nents into the network (no need to produce and deliver them), the number
of active probes might grow much faster than in hardware-oriented measure-
ment infrastructures.

3. Since smartphones are mobile devices, now a ”probing host” becomes a mo-
bile host, i.e., the smartphones change their geographical location during the
time, which leads to a single device can perform active Internet measure-
ments from different locations (or/and different Internet providers). This
property is useful for network researchers, because they can collect mea-
surement results which presents data from more geographical locations much
faster. In this way smartphones potentially become are a very attractive in-
frastructure for performing Internet measurement tests and collecting ob-
tained results.

4. Furthermore, most smartphone devices are able to determine their current
geographical location using the GPS system, which is usually is not the case
when tests are run from stationary desktops or laptops. This can bring ad-
ditional benefits to broadband connectivity measurements, since now the ac-
tual geographical position can be assigned to a particular measurement test
result.
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5. Finally, the performance and policy management measurement tools can be
useful to end-users to monitor and troubleshoot the current state of the mo-
bile network.

2.3.1 Internet Measurement on Mobile Networks Overview

The existing network measurement tools for mobile platforms (Android, iPhone,
Windows Phone OS) mostly allow only to obtain basic network information (e.g.,
local and global IP addresses of the mobile device) and to measure the network
performance (e.g., downlink/uplink throughput, latency, round trip time).

The Network Diagnostic Tool (NDT) [50] is an application for Android-based
smartphones for running network speed and diagnostic tests. An NDT test reports
the upload and download speeds, in addition it also attempts to determine what, if
any, problems limited these speeds, differentiating between computer configuration
and network infrastructure problems. The NDT server collects test results, records
the user’s IP address, upload/download speed, packet headers and TCP variables
of the test. Note that Network Diagnostic Tool is a part of the M-LAB Internet
measurement platform.

The WindRider [51] application has been developed for the Windows mobile
platform. It attempts to detect whether your mobile broadband provider is per-
forming application or service specific differentiation, i.e., prioritizing or slowing
traffic to certain websites, applications, or content. In addition, passive measure-
ments are performed on the mobile device. The application measures the delays
experienced by different web pages and records the explicit user feedback about
different applications. WindRider can be installed on a mobile device such as a
Pocket PC.

The Fing [52] is a multiplatform (Linux, Mac OS, Windows, Android, iPhone,
iPod, iPad) toolkit for network management, which allows to perform service scans
(TCP port scan), hosts availability detection, traceroute, MAC address and vendor
gathering, TCP connection testing, DNS lookup.

MobiPerf [53] is a handy mobile network measurement tool designed to col-
lect anonymous network measurement information directly from end users. It runs
on Android and iOS devices and within 2-3 minutes, users are able to obtain ba-
sic network information (e.g., the device’s IP address as seen by the server and
the network type such as HSDPA), network performance information (e.g., down-
link/uplink throughput in kbps) and network policies (e.g., testing which ports are
blocked by the cellular ISPs).

The RadioOpt Traffic Monitor [54] measures data traffic consumed by your wifi
and cellular interface. It also can measure download and upload throughput as well
as ping durations via an integrated speed test (available for Android OS based de-
vices).

J. Prokkola, P. Perälä and M. Hanski in [55] analyze the performance measure-
ments (including one-way delay and jitter) in live 3G/HSPA networks by compar-
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ing TCP and UDP goodput performance in WCDMA, HSDPA-only, and HSPA
mobile networks. Also they discuss the impact of different properties like speed,
signal strength, handovers onto the network performance.

In [56] K. Pentikousis, M. Palola, M. Jurvansuu, and P. Pekka present the
results of extensive experimentation and performance measurements with public
WCDMA 3G/UMTS networks. In this paper the so-called ”first connection good-
put phenomenon” is explained. This phenomenon refers to that the observed good-
put of the first of a series of back-to-back transfers is consistently below par. In
addition, authors pay attention on the precise bandwidth measurement in mobile
networks. Particularly they conclude that high goodput rates are only achieved us-
ing large payloads.

In [57] a passive methodology for TCP performance evaluation over General
Packet Radio Service (GPRS) networks is presented. This technique relies on traf-
fic monitoring at the GPRS ingress/egress router interface. Based on the IP and
TCP headers of the packets authors estimate the end-to-end performance of TCP
connections such as connection setup behavior and data transfer performance.

2.3.2 Traffic Shaping Detection on Mobile Networks

In section 2.1.5 we discussed the measurement instruments to run application
and policy measurements. In particular, several projects for traffic shaping detec-
tion were mentioned above. Let’s look at what the State of the Art for such kind of
applications for mobile devices and mobile networks is.

In 2009, a group of researchers from the North Western University (Evanston
and Chicago, Illinois, U.S.A.) have started a project called WindRider [51]. Wind-
Rider is an application for mobile devices that performs active and passive Internet
measurements. One of the goal of this measurement tool is to detect whether your
mobile broadband provider is performing application-specific or service-specific
differentiation. By June 2012, the implementation for Windows Mobile 5 opera-
tion system was completed. However, this version of mobile OS is outdated now
and it is not supported anymore. WindRider implementations for Apple IOS and
Android OS were announced, but none of them have been finished yet. Moreover,
the website of this project has not been updated for the last two years, and the cur-
rent status of this project is unknown.

One of the most popular applications for traffic shaping detection is called Glas-
nost [3]. Using this application, you can test if your ISP is throttling or blocking
different types of application-layer protocol traffic, like P2P protocols (including
BitTorrent, eMule), HTTP traffic, SSH transfer, Flash video and others. Glasnost
is based on a client-server architecture, where the client connects to a Glasnost-
server to download and run various tests. Each test measures the path between the
client and the server by generating flows that carry application-level data which are
constructed to detect traffic differentiation along the path.

However, Glasnost is not applicable for running on smartphone devices, be-
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cause:

– the Glasnost-client component is implemented using Java Applet technol-
ogy, but unfortunately Apple IOS devices do not support running Java ap-
plets; and Android OS offers only limited applet support, which makes it
impossible to run the Glasnost-client on Android-based smartphones;

– In addition, the Glasnost tests were not designed to use them on mobile
networks. As a result, a single test execution might consume more than 100
MB of data traffic, which is completely unacceptable for mobile Internet
users.

Other existing tools (mentioned in section 2.1.5) have different client ports for
different operational systems (MAC OS X, Linux, FreeBSD, Windows). But none
them has an implementation that can be run on modern mobile platforms (Android-
based or iOS-based). So, currently there is no working application for smartphone
devices that can perform traffic shaping detection. The only workaround to make
such measurements on mobile networks, is to use a smartphone device as an Inter-
net bridge, and run one of the mentioned applications on the connected workstation
(or laptop).
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Chapter 3

Implementation

In this chapter we will provide information about a tool developed in the frame
of the master thesis project, which can be used for Android smartphones and helps
to detect the deep-packet inspection based traffic shaping on mobile networks. We
will start from the application architecture overview and the basic idea of the tech-
nique that helps to detect the traffic shaping along the path. Then we will talk
about the client’s pre- and post-test request processing, the format of the protocol
description files which are used to define the measurement tests, the measurement
test lifecycle and finally we will discuss the algorithm of statistical analysis of ob-
tained measurement results.

3.1 Traffic Shaping Detection Tool Overview

As we have discussed in subsection 2.1.5, ISPs can differentiate between flows
of different types by examining the IP headers, the transport protocol headers or
the packet payloads. During this project, we created an application for Android OS
that helps to detect the traffic shaping based on the deep packet inspection tech-
niques. In other words, we assume that IPSs perform deep packet inspection to
determine whether a flow carries some ”unwanted” application protocol data. De-
tection of the presence of traffic differentiation based on examining IP headers or
transport protocol headers is not considered in this thesis. Another limitation of
our measurement tool, is that all communication between the server and the client
components is done using stream sockets (implemented on top of the TCP proto-
col). Therefore, the application can detect traffic shaping of only those application
protocols, which use TCP on the underlying transport layer.

The application is based on a client-server architecture (see Figure 3.1). A
client connects to a measurement server and retrieves the list of available applica-
tion protocols to test. The client can select one of these protocols and download
a corresponding application protocol description file from the server side. Each
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Figure 3.1: Traffic shaping detection tool lifecycle overview (∗this sequence di-
agram does not present the lifecycle of measurements for protocol and random
flows, refer to section 3.4 for more details).

description file provides a set of rules, which define the client’s and the server’s be-
havior during the measurement test (please, refer to section 3.2 for more details).
Once the client downloads a particular protocol description file, it can start a mea-
surement test that checks whether current ISP deploys some traffic differentiation
policy for the selected application protocol or not. We do not want to collect any
data about the measurements without client’s permission, therefore all measure-
ment test results are stored locally on the client’s smartphone. Users can submit
measurement results to the server side manually. The pre-measurement test and the
post-measurement test client requests processing is discussed in Section 3.3. The
measurement test execution details are presented in Section 3.4.

The core idea behind the traffic shaping detection measurement test is the emu-
lation of a pair of flows that are identical except in one respect that should trigger
traffic differentiation along the path. In the context of this paper, when we talk
about the flow, we mean the sequence of packets that are exchanged between the
server and the client sides in both directions within the same TCP connection. The
performance of the flow implies the application goodput during the lifetime of this
flow. According to the goodput definition, this is the number of useful informa-
tion bits, delivered by the network to a certain destination, per unit of time [58].
We distinguish two components: downlink performance and uplink performance.
The first component denotes the application goodput in download (from the server
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to the client) direction, and the second component denotes the application good-
put in upload (from the client to the server) direction respectively. Measuring and
comparing the performance of those two flows helps to determine whether content-
based traffic shaping methods were applied or not. Since my application for traffic
shaping detection injects custom packets into the network during the measurements
it can be classified as an active measurement tool.

Let’s consider an example of constructing a pair of flows that can help to re-
veal the presence of traffic shaping of a BitTorrent [59] application protocol along
the path (see Figure 3.2). The left figure corresponds to the first flow. The client
opens a TCP connection to the measurement server (the Figure 3.2 represents only
the application layer protocol messages, hence the TCP handshake is not shown)
and starts sending packets that implement the BitTorrent protocol. In this case, the
payload of the packets carry BitTorrent protocol headers and content. The server
in its turn responds with packets that conform to the BitTorrent specification.

The packet exchange on the right figure corresponds to the second flow. Now,
the client opens another TCP connection and sends the same packets, but in this
case the payload contains randomly generated data. Note that packets preserve
their sizes as in the first flow.

The two flows traverse the same network path and have the same network-
level characteristics. As a result an Internet Service Provider that differentiates
BitTorrent traffic would impact only on the first flow, and keep the second flow’s
performance untouched. Thus, significant differences in those two flows’ perfor-
mances are likely to be caused by the traffic manipulation along the path. If the
ISP completely blocks BitTorrent traffic, it also would be noticed because one of
the participating sides (client, server or both of them) will receive a socket time-
out. And the flow with random data will successfully finish the packets exchanging
measurement cycle.

The presented traffic shaping detection technique is similar to that used in the
Glasnost [3] project. The benefit of the proposed technique is that we are running
an active measurement test. This implies that we totally control the measurement
test lifecycle (we can repeat flows with different properties like payloads or port
numbers). As a drawback, we need to generate and inject additional data into the
network, which in case of mobile networks (EDGE, HSPA) is still relatively ex-
pensive. Additionally, the active measurement tests allow to make a conclusion
about the presence of traffic differentiation along the path without involving other
users into a measurement process. Unlike the projects based on the passive detec-
tion techniques (e.g., NANO [5]), which require making observations from many
end-hosts.

DiffProbe [8] also uses an active probing method in order to detect whether an
ISP is deploying forwarding mechanisms such as priority scheduling, variations
of Weighted Fair Queuing (WFQ) or Weighted Random Early Detection (WRED)
to discriminate against some of its customer flows. Like in our proposed method,
DiffProbe also traverse the network with two separate flows: an Application flow
and a Probing flow. The difference is that instead of measuring network bandwidth,
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Figure 3.2: A pair of flows used to detect BiTorrent traffic differentiation along the
path.

DiffProbe compares delays and packet losses experienced by these two flows. In
this way, DiffProbe complements the proposed traffic shaping detection method as
it can detect differentiation that leads to a small increase in latency. However, as
soon as active queue management techniques, used by ISP, affect on the application
goodput, we can also detect this type of traffic differentiation.

3.2 Protocol Description Files Format

In this section we discuss the format of so-called protocol description files that
are used by the server and the client in order to construct the flows that carry head-
ers and payloads of a particular application protocol.

Only flows that carry packets which conform to an application protocol that we
want to test will trigger the traffic shaping (if shaping policy for particular protocol
exists). Therefore, a set of the rules that define protocol headers and payloads must
be defined for every application protocol for which we would like to be able to run
measurement tests.

First, we had an idea to replay network traffic for corresponding application pro-
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tocols previously captured with Wireshark [60] and stored in pcap [61] files. How-
ever, during the development phase, we faced the problem of reading pcap files on
Android smartphones. There is no working library available for parsing pcap for-
matted files for Android OS. The only solution found was a Jnetpcap for Android
library [62], which is still in an early development phase and non-optimized. This
open-source library is able to read pcap files, though its performance does not al-
low to use this library in a real application, because of the slow data parsing speed.
For example parsing a small pcap capture file with only 6 records (each record less
than 2 kB) on a HTC Desire S smartphone (CPU 1GHz, RAM 768 MB, Android
OS version 2.3.5) took approximately 5 seconds. Fixing performance problems, as
well as creating our own pcap-parser solution for Android OS, would have taken
too much time. So, we had to abandon the idea of using pcap formatted files in our
traffic shaping detection tool.

As a result, we decided to create a so-called protocol description file for every
application protocol for which we would have liked to provide measurement tests.
The proposed protocol description file format is very similar to the format used in
the Glasnost [3] application. The reason why we did not use the Glasnost format
and developed our new own format was that the measurement test lifecycles are
different in these two projects. The Glasnost protocols description file contains
commands and parameters that are redundant in our application, and vise versa
some of command that we need are not presented there.

Each protocol description file defines the name of the application protocol, port
numbers that should be used during the measurement tests, well-known port num-
bers that might be officially or unofficially assigned to a particular application pro-
tocol, and a sequence of commands that tells how to construct a payload which
conforms to a protocol specification.

Let’s look at the example of the protocol description file that corresponds to a
HTTP protocol.

protocol HTTP
PFport 30008
RFport 31008

request string("GET /wiki/Jacobs University Bremen HTTP/
1.1") byte(13) byte(10) string("Host: en.wikipedia.org")
byte(13) byte(10) string("User-Agent: Mozilla/5.0 (Linux;
U; Android 2.3.5; en-de; HTC Desire S Build/GRJ90) AppleWebKit/
533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1")
byte(13) byte(10) string("Accept: text/html") byte(13)
byte(10) string("Connection: close")
byte(13) byte(10) byte(13) byte(10)

response string("HTTP/1.1 200 OK") byte(13) byte(10)
string("Server: Apache") byte(13) byte(10) string("Content
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-Language: en") byte(13) byte(10) string("Content-type:
text/html; charset=utf-8") byte(13) byte(10) string("Content
-Length: 20") byte(13) byte(10) byte(13) byte(10)
string("12345678901234567890")

The first line defines an application protocol name which is visible to an end
user. The protocol name might be an arbitrary string value placed right after a key-
word protocol (separated by a space character). Note, that the application protocol
name is a mandatory field and it must be unique for each protocol description file.
In addition it must not contain space characters.

Next two following properties (PFport and RFport) define the TCP port num-
bers which are used to communicate with a server during the measurement tests.
The destination port number defined by the PFport field is used by a client to es-
tablish a TCP connection for sending a flow that carries application protocol data
(so-called ”protocol flow”). The RFport field defines the destination port number
used to send the flow with randomly generated data (so-called ”random flow”).
The requirements for PFport and RFport values are the following: these values
are mandatory parameters and they must be unique for each protocol description
file, and these port numbers should not be registered to any application protocol in
order to avoid the possible traffic shaping from an ISP. The list of Internet socket
port numbers used by different application protocols can be found here [63].

Finally, the protocol description file contains a set of request and response in-
structions that define how to build the application protocol headers and payloads.
In the example above, the request command tells a sender (might be a client or
server component depending in which direction we are measuring the path at the
moment) to send an HTTP request to retrieve the page about the Jacobs Univer-
sity Bremen from Wikipedia. The responder side sends back an HTTP 200 OK
response that contains 20 bytes of payload. The following functions can be used in
a protocol description file to construct the application protocol header and payload:

– string(argument) function appends to a message buffer a sequence of
bytes that encode a given string argument;

– byte(value) function appends to a message buffer given byte value (this
argument must be in range from 0 to 255);

– repbyte(value, N) function (is not presented in the example above)
appends given byte value to a message buffer exactly N times (N must be a
positive integer value).

The protocol description file might contain more than one pair of request –
response commands. The only constraint is that for every request, exactly one
response must be defined immediately after the request definition. The commands
defined in a protocol description file are separated by a newline character (empty
lines are ignored by a parser).

Since the same protocol description file is used by both components, the server
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and the client sides can generate a flow that carries packets that implement some
application protocol (a destination port number defined by PFport value is used).
For detecting content-based differentiation, a new TCP connection is established
(RFport number is used), and the server and the client generate a flow that carries
randomly generated data (while the size of the messages is preserved). Thereby,
only the protocol flow might be affected by the traffic shaping mechanism.

The protocol description files for different application protocols are stored in a
server’s file system. Each protocol description is parsed by a server at startup time.
The client can download and parse the content of any description file, right before
running a corresponding measurement test.

3.3 Client Requests Processing

In this section we describe the protocol used for communication between the
client and the server. For processing pre-measurement and post-measurement re-
quests from the different clients, the server component opens a TCP server socket
(hereinafter referred to as ”Main socket”) on the port number which is known to
all clients. The main socket is responsible for processing the client demands in
order to prepare the client for measurement test execution, and for handling post-
execution requests. The main socket is able to handle the following client requests:

– get a list of available application protocol;

– get a protocol description file of the specific application protocol;

– initiate a traffic shaping measurement test for the selected application proto-
col;

– retrieve a downlink measurement test results from the server side;

– submit a measurement test results to the server side;

Let’s look at the client request processing in more details:

a) Retrieving a list of available application protocols to test and download-
ing the specific protocol description file.

All the protocol description files are stored in a server’s file system. They
are parsed by a server at startup time. We do not store these protocol descrip-
tion files on the client, since by changing even a single protocol description file
on the server side, we would force end-users to update their client applications as
well. The different versions of the same protocol description file on the server and
the client sides would make it impossible to run the corresponding traffic shaping
measurement test. Thereby, the client should be able to retrieve the list of sup-
ported application protocols, and download the corresponding protocol description
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Figure 3.3: The client retrieves the list of available application protocols and down-
loads the HTTP protocol description file.

file right before the test execution from the server.
To learn which application protocols are available for running traffic shap-

ing measurement tests, the client established a TCP connection with the server’s
main socket and sends a message that contains only get all protocols\r\n string
value. Once this request is received by the server, it responds with a message that
contains a list of available application protocol names separated by the ”\r\n” de-
limiter (see Figure 3.3). The end of message\r\n string indicates the end of the
response message.

Since the application protocol name is unique value, it can be used as an iden-
tifier when the client wants to download the specific protocol description file. For
this purposes a client sends a message that contains the string value of the follow-
ing format: get protocol <protocol name>\r\n. Where the <protocol name>
is a corresponding application protocol name. When the server receives that com-
mand it sends back to the client the content of the corresponding protocol descrip-
tion file (see Figure 3.3). Which is parsed by a client’s application later. The
end of message\r\n string indicates the end of protocol description file. If the
server can not find the protocol description file that corresponds to the applica-
tion protocol name provided in the client’s request, it sends back a message with a
get protocol failed\r\n string.

b) Initiate the traffic shaping measurement test for the selected application
protocol.

The main socket is also used to accept the client requests when the user wants
to start the new traffic shaping measurement test for a certain application protocol.
In order to initiate new measurement test the client sends a message that contains
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Figure 3.4: The client initiates a new measurement test for an HTTP application
protocol with 5 measurement cycles.

the string of the following format: start new test <protocol name> <number
of cycles>\r\n, where the <protocol name> is a corresponding application pro-
tocol name, and the <number of cycles> represents the total number of measure-
ment tests to run in a row.

A single measurement test execution usually is not enough to make an unam-
biguous conclusion about the presence of traffic shaping along the path. So, it is
highly recommended to repeat the same test several times to increase the quality
of measurements. Once the server receives the command, it creates an object for
storing measurement test results, generates and assigns a universally unique iden-
tifier (UUID) to that object, and sends back the string representation of the UUID
value to the client application (see Figure 3.4).

Now, the client can establish new TCP connections with the measurement server
(using the PFport and RFport destination port numbers specified in the correspond-
ing protocol description file) in order to run random and protocol flows. The pre-
viously obtained UUID is used to identify the measurement test instance on the
server side.

c) Retrieve the measurement test results from the server side.

According to the application’s architecture, once the measurement test is done,
the measurement test results for an upload direction are stored on the client, and the
results for a download direction on the server. So, to collect and merge measure-
ment results of the same test, the client can send a message of the following format:
retrieve test results<uuid>\r\n, where the<uuid> is the string representation
of previously obtained UUID of a measurement test. The server responds with the
measurement test results for a download direction. The response message contains
a plain text composed from the multiple text blocks of the following format:
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Figure 3.5: The client requests the downlink measurement test results.

Cycle <sequence number>
Protocol
<message size> <RTT>
...
<message size> <RTT>
Random
<message size> <RTT>
...
<message size> <RTT>
End Cycle

where the <sequence number> defines the number of a measurement cycle for
which the results are presented, the <message size> value represents the number
of bytes in a message that was used to traverse the path during the test (see Section
3.4 for details) and the <RTT> value is a corresponding measured round trip time
(in milliseconds) of this message. The keywords Protocol and Random are used
to distinguish the measurement results between the random and the protocol flows.
The number of these blocks is equal to the number of measurement cycles in a test.
The end of message\r\n string indicates the end of the response message.

If some error occures during the test, or server side can not find the results for
this test, it replies with a message that contains the test results not found\r\n
string value to notify client that this operation failed. Once the data have been
transmitted the server deletes the instance of the object that stores measurement
test results for the corresponding measurement test UUID.

d) Submit measurement test results to the server.

If the user wants to share the measurement test results with us, he can push
the report file to the measurement server. The measurement test results are stored
in an HTML file. They present the measured link goodput values in the upload and
the download directions for the random and the protocol flows in a table format.
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Figure 3.6: The client submits the measurement test results HTML file to the server.

The HTML file is the most convenient way to store the measurement test results
on the client, since it can be viewed by any browser installed on an Android smart-
phone (in contrast, most Android browsers do not render XML files properly).

In order to push the report file, the client sends a message to the main socket
that carries the upload measurement results\r\n string value, and waits for the
response message with the ready\r\n string value. After that, the content of a
HTML report file is transmitted to the server side, where it is stored on the server’s
file system. The end of message\r\n string indicates the end of an HTML file
content. Once the file transmission is completed the client closes the TCP connec-
tion. If the ”ready\r\n” message has not been received within 3 seconds (default
timeout value), the client assumes that server is busy right now and it aborts the
upload results request.

3.4 Measurement Test Lifecycle

The traffic shaping detection technique has been described in Section 3.1. In
the current section, the implementation details of this technique are presented.

As it was mentioned above, to detect the traffic differentiation, we need to emu-
late a pair of flows that are identical except in one respect that should trigger traffic
differentiation along the path. By measuring and comparing performance of these
two flows, we can make a conclusion about the presence of a content-driven traffic
manipulation from the Internet Service Provider’s side. So the core task during
the measurement test is to determine the application goodput in both (upload and
download) directions for ”protocol” and ”random” flows.

The application goodput estimation is based on a simple idea. One of the partic-
ipants, for example, the client side, measures the current local time (called ”start-
time”) and sends a message to the server (see Figure 3.7). Both components know
the size of this message, and once server receives the whole message, it immedi-
ately responds with a short "OK" notification to acknowledge the client that initial
message has been delivered successfully. Now, the client measures the local time
(called ”end-time”) when the "OK" notification is delivered. Since we know the
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Figure 3.7: Scheme of uplink bandwidth estimation

number of bytes being transmitted, start and end measurement time values, we can
estimate the goodput in upload direction using the following formula:

Goodput = Number of bytes/(start time - end time)

This calculated goodput value slightly differs from the actual one, because we
are measuring the round trip time. However, we do not need to calculate the good-
put very precisely. More important is to know the ratio of estimated performances
for ”random” and ”protocol” flows.

The group of researchers in [55] showed that the near-nominal application th-
roughput (and hence the goodput) in mobile networks is realizable for large pay-
loads only. So, the size of the message used for probing the network (hereinafter
reffed to as ”bulk message”) should be large enough to fully utilize the allocated
bandwidth. This value is different for various mobile networks, and it depends on
the network type and on the network configuration. In order to be able to measure
the goodput on different mobile networks, we send a train of bulk messages. We
start with a relatively small 2kB message and gradually increase the bulk message
size if it is necessary. At each step the bulk message RTT value is measured. The
decision about increasing the bulk message size or terminating the current goodput
estimation round is made using the following rule:

if (bulk message RTT ≤MAX RTT ) then
increase the bulk message size and send it again

end
else

stop current measurement round
end

In the traffic shaping detection tool configuration the MAX RTT value of 2
seconds is used. This value was empirically determined during the series of tests
on the mobile networks. As it turned out, the bulk message with a 2 seconds RTT
value is enough to fully utilize the allocated network bandwidth regardless the net-
work type. Increasing the bulk message size after that value does not make sense
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anymore, since the estimated goodput value remains the same.
In the current application configuration the bulk message size changes accord-

ing the following scheme:

2kB -> 4kB -> 8kB -> 16kB -> 32kB -> 64kB -> 128kB ->
-> 256kB -> 512kB -> 1MB -> 2MB -> 4MB -> 8MB

In practice, the goodput estimation round usually terminates when the bulk mes-
sage size reaches the 1MB or 2MB value (in case of HSPA mobile networks). The
bulk message size of 4MB is used in rare cases when the mobile network band-
width value is higher than 5 Mbps. The 8MB message size is never used in practice
(modern HSPA mobile networks have a limit up to 7.2 Mbps) and it is reserved for
future.

Using the proposed measurement technique the client side can estimate the ap-
plication goodput on upload direction. And vice versa, to measure the goodput on
download direction the server sends a train of bulk messages to the client.

As it was described in section 3.3, when a user wants to start a new test, first he
establishes a new TCP connection with the main socket and sends the start new
test <protocol name> <number of cycles> command. Once a server receives
this command it creates an object to store measurement results, and generates the
UUID for the measurement test session (see Algorithm 1). This UUID value later
is used to identify the test instance on a server side while handing clients requests.

For every application protocol that is supported, two server TCP sockets are
opened and bound to port numbers specified in a corresponding protocol descrip-
tion file (PFport and RFport). The first socket is used to accept client connections
which correspond to ”protocol” flows, and the second server socket handles con-
nections that correspond to ”random” flows during the measurement test. Both
sockets are configured to infinitely listen to new connections made to these sock-
ets and accept them. Once a new client connection has been accepted, the server
component creates a new thread to handle this connection (see Algorithm 1). The
accepted client socket is passed as an argument to that thread. Hence, server sock-
ets are prevented from being blocked, and the server component is able to support
processing multiple client connections.

A single measurement test execution usually is not enough to make an unam-
biguous conclusion about the presence of traffic shaping along the path. So, it is
highly recommended to repeat the same test several times, to improve the qual-
ity of measurements. Each set of goodput measurements for a single flow in both
directions is called a measurement cycle. In order to neutralize the impact of the
previous measurements, the client establishes a new TCP connection with a corre-
sponding server socket (for random or protocol flow) for each measurement cycle
(see Algorithm 2). After a new connection has been established, the client and
the server send to each other the set of ”request-response” messages (hereinafter
reffed to as ”protocol messages”) defined in the corresponding protocol description
file. Both sides know the size, the number of protocol messages and their order.
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Once the server receives the ”protocol request” message it immediately sends back
the corresponding ”protocol response” message. During sending the protocol mes-
sages, the server and the client calculate the number of received bytes in order to
determine the end of a message. This is done to preserve a format of application
protocol which is tested. Otherwise, if we append custom ”end of the message”
characters there is a risk that an ISP would not match the application flow.

These protocol messages are used to trigger the traffic differentiation along the
path. While the content of bulk messages is generated randomly for both (random
and protocol) flows. There is no need to make the bulk messages conform to the
tested application protocol. The deep packet inspection tools do not sniff every
packet within a flow, because it would be a huge waste of clock cycles. In addition
it would be useless for matching most packets, which are likely to consist of data
without any application protocol ”identifiers” (for example the middle of some file
for P2P traffic). The bulk messages are used only for goodput estimation. We need
to inject the protocol messages at the beginning of a new TCP connection, since
some deep packet inspection tools (e.g. L7-filter [64]) make a decision about the
type of the flow by looking at the first several packets only. In the case when we
run a random flow, the server and the client also inject protocol messages, but in
this case, the protocol messages content is generated randomly, while the size of
the messages defined by the protocol description file is preserved.

Once all protocol messages defined in a protocol description file have been
sent, the client sends the information that helps the server to identify the measure-
ment cycle (e.g., the string representation of the test UUID of the measurement
test and the measurement cycle number separated by a space character. The \r\n
characters indicate the end of the message). After the server received the UUID
and the measurement cycle number it responds with a message that contains the
uuid received\r\n string.

After that the client and the server perform the goodput measurements for the
upload and the download directions (see Algorithm 3) using algorithm described
above. The protocol messages are injected every time right before the bulk mes-
sage is about to be sent. This is done to ensure that the deep packet inspection
tools, which might continue sniffing the packets, could still match the flow. When
the measured RTT value becomes larger than MAX RTT threshold, or the bulk
message size reaches the maximum value, the client (or the server depends on
which direction we are measuring the goodput) sends a terminate message\r\n
string to notify the server that the measurements in a particular direction cycle are
done.

After the entire measurement test has been completed, the upload goodput re-
sults are stored on the client side, and the measured download goodput results –
on the server side. To retrieve the measurement results from the server, the client
sends a retrieve test results <uuid> command to the main socket.

35



Cycle 2 kB 4 kB 8 kB 16 kB 32kB 64 kB 128 kB 256 kB
1 115 269 306 320 325 333 357 -
2 115 293 306 320 333 323 320 -
3 134 292 321 321 325 288 314 -
4 108 179 268 292 309 287 305 -
5 161 292 292 285 247 295 308 -

Table 3.1: Download performance values (in kbps) for Random flow on the HSPA
network of the Congstar mobile operator.

3.5 Measurement Results Data Analysis

This section contains the information about how to interpret the measurement
test results, and describes the algorithm that helps to make a decision about the
presence of traffic shaping along the path.

The measurement test results are presented to the end user in the form of tables,
which contain the measured goodput values (see Table 3.1). There are four tables:
one for each (protocol and random) flow in each (upload and download) direction.
The goodput values corresponding to the biggest bulk message size within a mea-
surement cycle represent the value closest to the actual goodput value (e.g., in a
Table 3.1 the estimated goodput value for the measurement cycle number 1 is a
357 kpbs). By comparing the estimated goodput values for the protocol flow and
the random flow in the same direction, we can make a decision about the presence
of the traffic shaping along the path.

The ISPs can shape the application protocol performance not only by limiting
the application goodput. They could also terminate the TCP connection by send-
ing a TCP FIN or TCP RST packet to the client (or server), or drop the packets
with a 100% drop rate. The traffic shaping detection tool is able to detect these
types of traffic differentiations. In the first scenario, the detection tool would no-
tice that the socket was unexpectedly closed during the test, and it would be shown
in the output table as a "connection reset" record in a corresponding mea-
surement cycle row. In the second case, the traffic detection tool would receive the
SocketTimeoutException during the test execution. And this also would be
displayed in the output table as a "timeout" record (see Table 3.2). Thus, if
the output tables for Protocol flows have many "connection reset" or/and
"timeout" records and the corresponding tables for Random flows do not have
them (or have only few of them), then it is fairly likely that the provider does traffic
shaping for an application protocol that we have been tested.

In order to help the user, the application automatically makes a decision about
the presence of traffic shaping along the path using the statistical methods (imple-
mentation is done on the client component in the de.jacobs.university.
cnds.bonafide.utils.ResultAnalyzer class). The ResultAnalyzer can
return one out of the five possible decisions: we observe the traffic shaping, the traf-
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fic shaping most probably exist, the traffic shaping most probably do not exist, we
do not observe the traffic shaping and we can not rely on provided data.

At the first step, we analyze the measurement results by the completeness crite-
rion. For that purposes, we calculate so-called fail ratio for both flows, which
determine the ratio of the measurement cycles that exited with a "connection
reset or a "timeout" exception. If the ratio for a random flow is less than
20% and the ratio for a protocol flow is more than 70% we conclude that appli-
cation protocol performance has been affected by a traffic shaping along the path,
otherwise we continue the data analysis.

Cycle 2 kB 4 kB 8 kB
1 17 43 timeout
2 19 44 timeout
3 18 45 timeout
4 17 44 63

Table 3.2: Example of measurement test with fail ratio of 75%

Next, we formulate the null hypothesis that the measured goodput values for
the random and the protocol flows in the same direction are close to each other, so
the traffic shaping along the path is not observed. To check this null hypothesis,
the ResultAnalyzer uses the Mann–Whitney U statistical test [65]. According
to that method, we combine the goodput values for the two flows into a single set,
sort this set in ascending order and assign the rank to each goodput value according
to its position in a sorted set. Then we calculate the sum of goodput ranks for each
flow separately and determine the greater (Tx) value. The Mann–Whitney U value
can be calculated using the following formula:

U = n1 · n2 + nx·(nx+1)
2 − Tx;

where the n1, n2 are numbers of measured goodput values for protocol flow and
random flow respectively, and the nx is a number of measured goodput values in a
flow with a higher rank Tx.

Finally we compare the calculated U value with a corresponding Ucritical value
from the predefined Mann-Whitney critical values table (with a level of confidence
95%) [66]. If the U > Ucritical then we can accept our null hypothesis, which
means that there is no traffic shaping along the path.

Additionally, we calculate the confidence interval for both flows which can be
defined by the following segment:

[Tmean − St(n) · σ√
n
;Tmean + St(n) · σ√

n
];

where Tmean is a mean goodput value for a corresponding flow, n is a number of
measured goodput values for a flow, St(n) is a corresponding Student’s-t distribu-
tion coefficient for an one-sided critical regions with a confidence of 95%, and σ is
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a standard deviation:

σ =

√√√√ n∑
i=1

(Tmean−Ti)2

n−1

where Ti is a measured goodput value during the ith measurement cycle. All good-
put values that are out of the confidence interval are thrown away, and confidence
interval is re-calculated again (including the mean value). This process repeats un-
til all of the remaining goodput values lays inside the confidence interval. After
that step, the measurement results are cleaned from the distorted measurements.
Thereby, we can compare the bounds of the corresponding confidence intervals,
the mean goodput values and the maximum observed goodputs for both flows in
order to make a decision about the presence of the traffic shaping along the path
(see Algorithm 4).

These two statistical methods add to each other. The U ≤ Ucritical does not
mean that the tested application protocol has been shaped. For example, the Mann-
Whitney U test would return the false positive decision about the presence of traffic
shaping on the following sets of goodput values:

Protocol flow: 1000, 1001, 1002, 1003, 1004 (kbps)
Random flow: 1005, 1006, 1007, 1008, 1009 (kbps)

The maximum goodput value for the protocol flow is less than minimum good-
put value for the random flow (i.e., U = 0). However, all goodput values stay on
the same level, and the traffic shaping methods definitely were not applied in this
case. The correct decision in this case can be made using the confidence intervals
method.

And vice versa, the confidence intervals method would make a false positive
decision in case of measurement results with a lot of distortions1:

Protocol flow: 25, 28, 32, 330, 338 (kbps)
Random flow: 27, 315, 30, 332, 325 (kbps)

The mean value and the confidence interval for the Random flow are 324 and
[317;330] kbps. Which is greater than values for the Protocol flow: 28 and [23;32]
kbps. However, the Mann-Whitney U value is 12 which gives us a correct decision:
NO SHAPING.

Mobile network performance might not be very stable during the measurement
test. The network performance can change significantly multiple times during a
relatively short time frame. This is especially noticeably on low-speed networks
like EDGE. Two factors have an impact on the network performance: the signal
strength and the load of the base station which the mobile device is connected
to. Unfortunately, we do not have an access to the information about the base-

1This is a real example from experiments on the Congstar mobile network for the RTSP protocol.
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station load at the moment. But the client component tracks all mobile network
state changes and signal strength changes during the test. Therefore, the lack of
signal or network discretions indicates that the obtained measurement results are
not reliable anymore.
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Chapter 4

Experiments Design

In this chapter, we will focus on the design of experiments that we made using
the developed traffic shaping detection tool. First, we will explain which applica-
tion protocols we would like to test during the traffic shaping detection experiments
on mobile networks, and clarify why exactly these protocols have been chosen.
Next, we will describe the experimental setup used for application correctness ver-
ification. Finally, we will describe the design of experiments made on the mobile
networks.

4.1 List of Available Protocol Description Files

Currently, the following protocol description files are available to download and
to run measurement tests: HTTP, FlashVideo (Youtube), SIP, RTSP, BitTorrent and
VoIP H323. In our opinion, being able to run traffic shaping detection tests for these
application protocols might be interesting from the smartphone users’ perspective.

We can speculate that mobile network operators might want to manipulate on
the VoIP applications traffic performance. VoIP applications for smartphone de-
vices actually are competitors for mobile service operators. To reduce financial
losses it is tempting to restrict the performance of traffic flows that carry VoIP data.

The VoIP H323 [29] standard addresses call signaling and control, multime-
dia transport and control, and bandwidth control for point-to-point and multi-point
conferences. It is widely deployed worldwide by service providers and enterprises
for both voice and video services over IP networks [67].

The Session Initiation Protocol (SIP) is a signaling protocol for controlling
voice and video streams over IP networks. This application protocol is designed
to be independent from the Transport Layer protocols, therefore it can be used
over the TCP [68]. There is a number of popular SIP clients for Android-powered
smartphones that allow to make VoIP calls over the Internet (SIPDroid, Linphone,
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Fritz!App, CsipSimple, etc.).
Since these H323 and SIP protocols are widely used in VoIP applications we

think it would be interesting to run a series of traffic measurement tests against
them. Even despite the fact that packets that conform SIP protocol carry only low
volume payloads, the mobile operators might want to completely block or limit the
performance of SIP flows.

According to the Google Play statistics [69][70] the BitTorrent client applica-
tions are much more popular than other Peer-to-Peer (P2P) client applications (like
eMule or Gnutella). It is highly unlikely that the end-users will use the P2P clients
on the mobile networks, because mobile networks are more expensive compara-
tively to Wi-Fi networks. However, many mobile Internet providers (e.g. Net-
toKOM, O2, Congstar) claim [11][12][13] that they do not support P2P traffic on
their networks. It is interesting to check whether they perform deep packet based
traffic shaping for the BitTorrent application protocol.

The Real Time Streaming Protocol (RTSP) [71] is a network control protocol
designed for use in entertainment and communications systems to control stream-
ing media servers. The protocol is used for establishing and controlling media
sessions between end points. Like HTTP, RTSP uses TCP to maintain an end-to-
end connection [72]. Some popular applications (Winamp, Spotify, VLC media
player) use the RTSP for controlling the audio streaming.

Finally, we created protocol description files for the HTTP and the Flashvideo
protocols. In our opinion, it is interesting to run an experiment for these application
protocols, since according to the Cisco Visual Networking Index (VNI) global mo-
bile data traffic forecast [73] the mobile video traffic and the web traffic represent
more than 90% overall mobile traffic.

4.2 Mesurement Tool Correctness Verification Experimen-
tal Setup

To ensure that the developed traffic shaping detection tool is actually able to
detect the content-based traffic differentiation along the path, we ran a series of
measurement tests on an experimental infrastructure (see Figure 4.1). In this ex-
perimental setup all generated traffic goes through the Linux machine, which plays
the role of a router. The router is configured to perform deep packet inspection and
throttling flows’ performance according to predefined set of rules. Since we know
how the performance of flows that carry different types of data should look like,
we can analyze results obtained during the measurement tests, and verify whether
traffic shaping detection actually works properly or not.

The OpenVPN [74] open source package that implements VPN techniques
has been installed onto a Linux machine for creating a point-to-point client-server
connection. In this scenario all traffic from the client to the server and vice versa
goes through the router. Thereby the router can manipulate the flows’ performance.

41



Client Router Measurement Server

tunnel

Figure 4.1: Experimental Setup Overview

To apply some traffic shaping rules on the router, we need to enable the router to
classify the traffic. For this purpose L7-filter [64] [75] classifier software has been
installed.

L7-filter is a software package providing a classifier for Linux’s Netfilter sub-
system, which can categorize flows based on the application layer data. Unlike
most other classifiers, it does not just look at simple values such as port numbers.
Instead, it does regular expression matching on the application layer data to deter-
mine what protocols are being used. L7-filter can be used in different scenarios like
when you need to match any protocol that uses unpredictable ports (e.g., peer-to
peer file sharing), to match traffic on non-standard ports (e.g., web traffic on port
1111), to distinguish between protocols which share a port (e.g., peer-to-peer file
sharing that uses port 80).

There are two versions for this software. The first is implemented as a kernel
module for Linux 2.4 and 2.6. The second experimental version runs as a user-
space program and relies on Netfilter’s user-space libraries for the classification
process. In our experiments, we used the user-space version of L7-filter, which is
still in the early stages of development, but is relatively easy to install compared
to the kernel-version, and detects a larger number of protocols. All versions of
L7-filter have been released under the GNU General Public License.

Both versions of L7-filter use regular expressions (though the user-space and
kernel modules use different regular expression libraries) to identify the network
protocol. The basic idea of L7-filter is to use regular expression matching of first
several IP packets application layer data per flow to determine what protocol is
being used. If the data matches regular expression for some traffic type, then the
entire flow is marked as ”matched” [76]. Running a regular expression matcher on
every packet does not make any sense. Not only because it would be a huge waste
of clock cycles, but it would be useless for matching most packets, which are likely
to consist of data without any protocol ”identifier” (the middle of some file for P2P
traffic for example).

Another benefit of using L7-filter for our testing purposes is that it provides
a large number of well tested regular expressions for different protocols, includ-
ing those that might be interesting from the smartphone users perspective, like:
flashvideo, SIP, RTSP, H323, different P2P protocols, HTTP.

In order to test how traffic shaping detection works for different traffic shaping
configurations, a number of traffic differentiation rules for the BitTorrent protocol
have been deployed on the router (see Table 4.1). The router has been configured
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Destination Port Number Maximum allowed bandwidth
45000 no limit
45001 1024 kbps
45002 512 kbps
45003 256 kbps
45004 128 kbps
45005 64 kbps
45006 drop packets (100% drop rate)
45007 drop packets (50% drop rate)

Table 4.1: Throttling policy for BitTorrent flows deployed on the router in experi-
mental enviroment

to limit the BitTorrent flows performance on port numbers 45000-45005 and to
drop BitTorrent flow packets on port numbers 45006 and 45007 in both (upload
and download) directions. The performance of flows that carry other protocol data
is not affected and stays the same on all destination port numbers.

The evaluation of measurement results is discussed in Section 5.1.

4.3 Experiments on Mobile Networks

Once the application correctness was verified, we ran a series of traffic shaping
detection tests on mobile networks. The main goal of these measurements was to
learn how and to which extend content-based traffic differentiation policies are de-
ployed on mobile networks.

Usually, mobile providers do not own the radio spectrum or wireless network
infrastructure over which they provide services to the end-users. These mobile
providers are called mobile virtual network operators (MVNOs) [77]. An MVNO
enters into a business agreement with a mobile network operator (MNO) to obtain
an access to network services at wholesale rates, then sets retail prices indepen-
dently. For example, by July 2012, in Germany there are 4 mobile network opera-
tors and more than 30 mobile virtual network operators [78].

In our traffic shaping detection experiments we had an access to four SIM-cards
from the mobile providers listed in table 4.2. These mobile providers use three out
of four mobile networks that are available in Germany. Thereby, we can compare
how the traffic shaping policies for different mobile network operators differ from
each other.

Furthermore, we choose two mobile providers (ALDI Talk and NettoKOM),
which are based on the same mobile network infrastructure, so we can compare
the traffic shaping configurations used across the same mobile network operator.

Of course, the number of operators that we selected is not enough to determine
whether the traffic shaping configuration depends on the policies deployed by a
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MVNO MNO
ALDI Talk (MEDIONMobile) [79] E-Plus

NettoKOM [11] E-Plus
O2 [12] O2

Congstar [13] Telekom (former T-Mobile)

Table 4.2: List of mobile operators used in our traffic shaping detection experi-
ments on mobile networks.

mobile network operator or by mobile provider (MVNO), though further measure-
ments for more providers would be helpful.

In order to answer the questions formulated in Introduction 1 we performed
various traffic shaping detection tests for six different application protocols. Three
different aspects were taken into account while running measurement tests:

a) Mobile network type. Mobile operators provide access to the Internet over
different mobile network types (e.g., GSM, EDGE, UMTS, HSPA) In order
to check, whether the traffic shaping policies within the same mobile differ
for various network types, we ran measurement tests over the EDGE [80]
and HSPA [81] network types (one of the most popular and widely deployed
2G and 3G mobile network technologies respectively).

b) The time of the day. One of our hypotheses was that mobile providers can
behave differently depending on the time of the day. For example, they can
limit their network bandwidth during the peak hours to reduce the load on
their network equipment. To verify whether they actually do that, we ran the
measurement tests during the different times of the day.

c) Mobile network speed. Usually, mobile providers charge users monthly
for using the Internet and they provide access to the Internet regardless the
amount of data that users consume. However the amount of data that users
consume has an impact on the network speed. Once a user exceeds the limit
(defined by a tariff-plan that is used), mobile providers restrict the network
bandwidth to some comparatively low-speed for that user. In order to check,
whether mobile operators additionally perform content-based traffic shaping
in that condition, we ran a series of measurements after the limit has been
crossed (see Table D.1 for details about the tariff-plans).

The traffic shaping detection application has been published on the Google Play
content-distribution service [82]. Thereby, we also collected measurement results
which have been submitted by the users who used our application.

The evaluation of experiment results is discussed in Sections 5.2 – 5.4.
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Chapter 5

Evaluation

In this chapter we discuss the evaluation and the measurement results collected
during the set of traffic shaping detection experiments. First, we will verify the
correctness of our application by analyzing the traffic shaping detection test results
made on the experimental setup. Next, we will discuss the results collected during
the traffic shaping detection experiments on mobile networks. In addition to our
experiments, we will discuss the measurement results which have been submitted
by the users who downloaded the traffic shaping detection application from the
Google Play service.

5.1 Application Correctness Verification

The first test to verify the correctness of the developed traffic shaping detection
tool was to check whether the measured goodput for BitTorrent flows and Random
flows stayed the same on port number 45000, where there was no traffic shap-
ing policy deployed. For this purpose, we executed a measurement test with five
measurement cycles. As we can see from the results (see Table C.2), the goodput
values for BitTorrent and Random flows for the download (as well as for the up-
load) direction stayed very close to each other. Which indicates that the BitTorrent
flows have not been affected by traffic shaping along the path. In addition, we
checked the L7-filter log file to ensure that all BitTorrent flows have been success-
fully matched.

Afterwards, we ran the measurement tests on port numbers 45001 – 45005. The
measured goodput for Random flows stayed very close to the goodput values ob-
served in the experiments where no traffic shaping was involved (see Table C.2).
And if we compare these values with measured performance for Protocol flows,
we can see that the Mann–Whitney U values are "0" for all measurements. In
addition, the maximum goodput values for the Protocol flows are always less than
the corresponding lower bounds of the confidence intervals for the Random flows.
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Therefore, we can conclude that different traffic shaping schemes were definitely
applied along the path. Furthermore, the measured goodput for Protocol flows on
different port numbers matches the bandwidth limits configured on the router (see
Table 4.1).

In addition two more destination port numbers have been configured to mani-
pulate on the BitTorrent traffic. On the port 45006 all the packets that belong to
BitTorrent flows were dropped. The traffic shaping detection tests for port number
45006 showed (see Table C.1) that for the BitTorrent flows the SocketTimeout
Exception has been thrown on every measurement cycle. In this way we can
successfully detect traffic shaping that drops all the packets that belong to an ”un-
wanted” protocol flow. Note that we have no measurement results for the down-
load direction in this case. This happened because the download and the upload
measurement tests are executed within the same TCP connection. According to
the measurement test lifecycle (see Section 3.4), the client and the server inject
the protocol messages before sending the test UUID. The L7-filter tool matched
the flow after protocol messages had been sent, and the router started dropping
the packages. As a result the retrieve test results <uuid> command failed later,
since the test UUID had never been delivered to the server.

On port 45007 the packets of the BitTorrent flows were dropped with a constant
drop rate of 50%. Measurement tests on port number 45007 showed (see Table C.1)
that goodput for BitTorrent flows was approximately 2.5 times less than for Ran-
dom flows. Therefore, we can successfully detect the traffic shaping based on the
packet dropping with a constant rate techniques. However, we can not distinguish
this type of traffic differentiation from the traffic shaping based on the limiting the
network bandwidth (like on port numbers 45001 – 45005).

The results obtained from the measurements on the experimental setup helped
us to verify that the developed traffic shaping detection application can successfully
detect the following types of the traffic manipulations along the path:

– Packet dropping (dropping packets that carry data of some traffic type using
a fixed or variable drop rate);

– Packet blocking (blocking packets or by injecting a connection termination
message);

– Deprioritizing (assigning differentiated flows to lower priority queues in or-
der to limit the goodput of certain classes).

5.2 Measurements on HSPA Mobile Networks

First, we ran measurement tests for ALDITalk and NettoKOM mobile operators
which share the same E-Plus HSPA mobile network. Four experiments were com-
pleted for these two mobile providers: the daytime measurements (approximately
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from 1PM to 2PM for ALDITalk, from 3PM to 4PM for NettoKOM) and the night-
time measurements (from 4AM to 5AM for ALDITalk, from 12AM to 1AM for
NettoKOM).

The measurement results with calculated Mann-Whitney U values, mean values
and confidence intervals for the ALDITalk daytime experiments are presented in
Tables E.1 and E.2; for the nighttime experiments in Tables E.3 and E.4; for the
NettoKOM daytime experiments in Tables E.5 and E.6; for the nighttime experi-
ments in Tables E.7 and E.8.

The statistical analysis showed that these two mobile operators do not apply
content-based traffic shaping to the tested application protocols. As we can see
from the measurement result tables, the U > Ucritical for all measurements, and
the confidence intervals for corresponding Random and Protocol flows stay close
to each other.

In addition, Figures 5.1 and 5.2 provide a comparison of measured goodput
values (in kbps) for ALDITalk’s and NettoKOM’s HSPA mobile networks during
different time of the day. These figures represent the ”minimum-maximum” good-
put intervals and calculated confidence intervals for protocol (PF) and random (RF)
flows for tested application protocols (we ran five measurement cycles within each
measurement test). The interesting observation is that the confidence intervals’
boundaries within the same direction for both operators stay approximately on the
same level: ∼[1000;1150] kbps for the download direction and∼[1200;1270] kbps
for the upload direction. Also, the average goodput in the upload direction is usu-
ally 100-150 kbps higher than goodput in the download direction for both opera-
tors. Based on these two facts, we can assume that the ALDITalk and NettoKOM
mobile operators use similar configurations of the E-PLUS’s HSPA mobile net-
work.

For some application protocols we can observe that calculated confidence in-
tervals for protocol flow and random flow do not intersect. For example, during
nighttime experiments for HTTP protocol on NettoKOM’s HSPA mobile network,
the confidence interval for random flow is ”higher” than corresponding confidence
interval for protocol flow (see Figures 5.1 and 5.2). The mean goodput value for
protocol flow is 14% less than the mean goodput value for random flow in the
download direction, and 10% less in the upload direction. However, the Mann-
Whitney values are U = 8 and U = 11 for the download and the upload direction
respectively (while the Ucritical = 2 in both cases). Therefore, we can conclude
that the NettoKOM operator does not apply traffic shaping policy to an HTTP proto-
col. We believe that in case of traffic shaping, the mean goodput value for protocol
flow will be significantly lower than the mean goodput value for random flow.

We can also observe the difference between protocol and random flows’ con-
fidence intervals in experiments on NettoKOM’s HSPA mobile network for Flash
Video protocol in the upload direction during nighttime (see Figure 5.2). How-
ever, in this case the mean goodput value for protocol flow is higher than the mean
goodput value for random flow. Therefore, we can conclude that no traffic shaping
policy has been applied to a FlashVideo protocol.
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Next, we ran traffic shaping detection tests on the Congstar’s HSPA mobile net-
work. The measurements took place during the evening time (from 7PM to 9PM).
The obtained measurement results are presented in Tables E.9 and E.10.

The first thing we can notice is that the measured goodput of SIP and random
flows significantly differ from each other. The Mann-Whitney U values are 0 for
both directions. The confidence intervals for the Random flows are [310;315] kbps
for the download direction and [331;332] kbps for the download direction. While
the confidence intervals for the SIP flows are [15;16] and [5] kbps respectively.
Thereby, we can conclude that the Congstar operator does traffic shaping for the
SIP application protocol. The measurement results for other tested protocols do
not reveal the presence of traffic shaping along the path.

The second observation is that the measured goodput stays very stable for all
measurements. And the goodput upper limit has a surprisingly small value (the
maximum observed goodput is 360 kbps only), while the HSPA networks usually
provide much faster connections (up to 7.2 Mbps).

Later, we repeated the traffic shaping detection test for the SIP protocol on Con-
gstar’s mobile network once again, but only during the morning hours at 9AM (see
Table E.11 for results). As we can see, the mean goodput in the download di-
rection for all application protocols increased by more than 16 times compared to
previous measurement results. Moreover, we no longer observe the shaping of SIP
protocol (the Mann-Whitney U values are 5 and 12 for the download and the up-
load directions respectively). From this we can assume that the Congstar provider
does time-based traffic differentiation of the SIP protocol, and it limits the network
performance in the download direction depending on the time of the day.
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Figure 5.1: Comparison of goodput values (in kbps) for ALDITalk’s and Net-
toKOM’s HSPA mobile networks for random flows (RF) and protocol flows (PF)
in the download direction during different time of the day.
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Figure 5.2: Comparison of goodput values (in kbps) for ALDITalk’s and Net-
toKOM’s HSPA mobile networks for random flows (RF) and protocol flows (PF)
in the upload direction during different time of the day.
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5.3 Measurements on EDGE Mobile Networks

Four traffic shaping detection experiments on EDGE networks were completed
during the master thesis project: two experiments for the NettoKOM provider at
the daytime (9AM – 10AM) and the nighttime (12AM – 1AM) and two experi-
ments for the ALDITalk provider at the daytime (10AM and 1PM) and the night-
time (1AM).

The measurement results for ALDITalk EDGE network for the daytime are pre-
sented in Tables E.12 and E.13, for the nighttime in Tables E.14 and E.15. The
daytime measurement results for NettoKOM EDGE network are presented in Ta-
bles E.16 and E.17, the nighttime results are in Tables E.18 and E.19.

The obtained measurement results show that both mobile operators do not ap-
ply traffic shaping policies for the tested application protocols on their EDGE net-
works. For all measurement, the Mann-Whitney U value is greater than the cor-
responding Ucritical. And only for the HTTP protocol test in upload direction on
ALDITalk network during the nighttime the U < Ucritical. However, since the cor-
responding confidence intervals intersect we can make a decision that there is no
traffic shaping observed.

Figures 5.3 and 5.4 provide a comparison of measured goodput values (in kbps)
for ALDITalk’s and NettoKOM’s EDGE mobile networks during different time of
the day. These figures represent the ”minimum-maximum” goodput intervals and
calculated confidence intervals for protocol (PF) and random (RF) flows for tested
application protocols (we ran five measurement cycles within each measurement
test). As expected, this mobile network type is characterized by a comparatively
slow and unstable network performance. The confidence intervals for the down-
load direction within the same network can significantly differ from each other
depending on the time of the day (e.g., in NettoKOM network measured download
goodput usually is 1.4 times higher than during the daytime). During the nighttime
the EDGE networks tend to be more stable, especially in the upload direction.

In addition we can see that the ALDITalk operator provides the commensurable
goodput for the upload and the download directions. While the download good-
put for NettoKOM network is usually 4-5 times higher than the upload goodput.
Thereby, we can conclude that these mobile operators use their own network con-
figurations on top of the E-Plus mobile network.

For some application protocols we can observe that calculated confidence inter-
vals for protocol flow and random flow do not intersect. For example, during night-
time experiments in the download direction for BitTorrent protocol on ALDITalk’s
EDGE mobile network, the confidence interval for random flow is ”higher” than
corresponding confidence interval for protocol flow (see Figure 5.3). The mean
goodput value for protocol flow is 9% less than the mean goodput value for ran-
dom flow. However, the Mann-Whitney value U = 7 which is greater than the
Ucritical = 2. Therefore, we can conclude that the ALDITalk operator does not
apply traffic shaping policy to a BitTorrent protocol.
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We can also observe the difference between protocol and random flows’ con-
fidence intervals in experiments on ALDITalk’s EDGE mobile network for RTSP
protocol in the download direction during nighttime (see Figure 5.3). However, in
this case the mean goodput value for protocol flow is higher than the mean goodput
value for random flow. Therefore, we can conclude that no traffic shaping policy
has been applied to a RTSP protocol.

51



BitTorrent VoIP-H323 FlashVideo HTTP SIP RTSP

min-max: RF daytime PF daytime RF nighttime PF nighttime

confidence interval: ALDITalk (MEDIONMobile) NettoKOM

50

70

90

110

130

150

170

190

Figure 5.3: Comparison of goodput values (in kbps) for ALDITalk’s and Net-
toKOM’s EDGE mobile networks for random flows (RF) and protocol flows (PF)
in the download direction during different time of the day.
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Figure 5.4: Comparison of goodput values (in kbps) for ALDITalk’s and Net-
toKOM’s EDGE mobile networks for random flows (RF) and protocol flows (PF)
in the upload direction during different time of the day.
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5.4 Measurements on Bandwidth-limited Mobile Networks

Usually, the amount of data that users consume have an impact on the mo-
bile network speed. Once a user exceeds the limit (defined by a tariff-plan that
is used), mobile providers restrict the network bandwidth to some comparatively
low-speed for that user. In order to check, whether mobile operators additionally
perform some content-based traffic shaping in this case, we ran a series of mea-
surement tests on the HSPA mobile networks, after the limit has been crossed, for
the following mobile operators: NettoKOM, ALDITalk and O2 (see Table D.1 for
details about the tariff-plans). All measurements took place during daytime: for
NettoKOM at 10AM, for ALDITalk at 11AM, for O2 at 2PM.

As we can see from the measurement results (see Tables E.22 and E.23 for the
ALDITalk provider, Tables E.20 and E.21 for the NettoKOM provider, Tables E.24
and E.25 for the O2 provider), the calculated confidence intervals for the download
and the upload directions stay close to each other for all Protocol flows and Random
flows within the same mobile network. In addition, for almost all measurements
the Mann-Whitney U value is greater than Ucritical. Therefore, we can conclude
that none of three tested operators does apply any traffic shaping policies to the
tested application protocols in case of the bandwidth-limited mobile networks. In
fact, the measured maximum goodput values for all mobile operators conform to
the corresponding limits defined by the tariff-plans.

We can notice that the average goodput in the upload direction for the Net-
toKOM mobile operator is 2 times less than the average uplink goodput for the
ALDITalk mobile operator. Which proves once again that NettoKOM and ALDITalk
providers use different configurations of the same network.

5.5 Other Measurements

In addition, we collected the measurement results which have been submitted
by the users who downloaded our application from the Google Play content distri-
bution service.

A set of measurements was completed on the MTS BY (Belarus) HSPA mo-
bile network. The measurement results are presented in Tables E.26 and E.27.
Note, that traffic shaping detection tests have taken place during different times of
the day. By comparing the calculated Mann-Whitney U values with corresponding
Ucritical values and the confidence intervals for the Random and the Protocol flows,
we can make a conclusion that this mobile operator does not apply any traffic shap-
ing policy to the tested application protocols.

In addition, two more measurement test reports have been submitted. The mea-
surement test results for the BitTorrent application protocol on the LUXGSM (Lux-
emburg) UMTS mobile network during the daytime are presented in Table E.28.
The measurement test results for the HTTP application protocol on the AT&T
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(USA) UMTS mobile network during the daytime are presented in Table E.29. In
both cases these two mobile operators do not perform traffic shaping of the tested
application protocols.

5.6 Measurement Test Performance

The main drawback of the presented traffic shaping detection mechanism is a
need of injecting bulk messages into the tested mobile network in order to de-
termine precisely the channel bandwidth. The exact number of bytes required to
obtain reliable measurement results depends on the mobile network type and the
actual network performance. Based on the measurement results from experiments
on mobile networks, we compose Table 5.1, which represents the approximate
amount of data consumed by the traffic shaping detection tool while it tests a mo-
bile network in one (upload or download) direction for one flow depending on the
measured goodput.

Measured goodput Amount of data
< 32 kpbs 16 kB

32 – 64 kbps 32 kB
64 – 128 kbps 64 kB
128 – 256 kbps 128 kB
256 – 512 kbps 256 kB

512 – 1024 kbps 512 kB
1 – 2 Mbps 1 MB
2 – 4 Mbps 2 MB
> 4 Mbps 4 MB

Table 5.1: Approximate amount of data required to test a mobile network in one
direction for one flow depending on the measured network performance

Hence we can estimate the total number of bytes in a single measurement test
using the following rule:

Btotal = N · (BPFD +BPFU +BRFD +BRFU )

where N is a number of measurement cycles, BPFD and BRFD are number of
bytes required to test a network in the download direction for protocol flow and
random flow respectively, BPFU and BRFU – for the upload direction.

For example, to run a test with a 5 measurement cycles on a mobile network
with a speed limit up to 1200 kbps in both directions (quite common configura-
tion in HSPA mobile networks), we need to consume approximately 20 MB of
data. In a very fast networks this value can even grow up to 60 – 80 MB. Which
is too much from a mobile user’s perspective, because usually mobile operators
reduce the channel bandwidth after the user exceeds some data limit. Reducing the
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amount of data consumed during the measurement cycle has a negative impact on
the quality of measurement results. However, the user can define the number of
measurement cycles within a measurement test from the client application’s GUI.
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Chapter 6

Conclusions

In the scope of the Master Thesis project, a measurement tool for detecting
the presence of content-based traffic shaping mechanisms in mobile networks has
been developed. This active measurement tool is based on a client-server archi-
tecture. The server component is a daemon running on a Linux server, which is
reachable in the Internet network for other measurement participants. The client is
an Android-application, which can be installed on any Android OS-based mobile
device. When the client side establishes a connection with a measurement server,
it can download and execute a number of tests that help to reveal the following
deep-packet inspection based traffic manipulation methods along the path:

– Packet dropping (dropping packets that carry data of some traffic type using
a fixed or variable drop rate);

– Packet blocking (blocking packets or by injecting a connection termination
message);

– Deprioritizing (assigning flows to lower priority queues in order to limit the
goodput of certain classes).

We have made a series of measurement experiments for different mobile net-
work operators. The results have shown that for most of the them there is no
content-based traffic shaping for the tested application protocol types. Surpris-
ingly, most mobile providers do not block SIP and VoIP traffic, even despite the
fact they claim that VoIP is not supported in their networks [11] [12]. The only ev-
idence of traffic shaping that has been found refers to the provider Congstar, which
limits the upload and download performance of SIP flows during the evening hours.
This makes it impossible to make SIP-calls on this mobile network. However, it
seems to be a time dependent traffic shaping policy, since during other experiments
on this mobile network that have taken place during the morning hours the manip-
ulation on the SIP flows has not been noticed.

Also, our experiments have shown that the tested mobile operators do not apply
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traffic shaping policies in case when they have already limited the network perfor-
mance (after users crossed the data limit).

During developing and testing the traffic shaping detector tool, we faced a prob-
lem that is specific for active Internet measurements in mobile networks. Mobile
network performance might not be very stable during the measurement test. For
example, the network bandwidth can change significantly multiple times during a
relatively short time frame. This is especially noticeably on low-speed networks
like EDGE. The network performance depends on two factors: the signal strength
and the load of the base station which the mobile device is connected to. Hence,
during the analysis of the measurement results, we should keep in mind that sig-
nificant changes in a flows’ performances might be caused not only by traffic dif-
ferentiation along the path.

To obtain reliable results, the client and the server need to send messages with
a large payload. A single traffic shaping measurement test with five measurement
cycles might consume up to 80 MB of data depending on the network type. This
might repel mobile Internet users from using our application. However, reducing
the amount of data consumed during the test has a negative impact on the quality
of measurement results.
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Appendix A

Source Code

The source code of the developed traffic shaping detection tool is publicly avail-
able under the BSD 2-Clause License and can be found at the CNDS website:
cnds.eecs.jacobs-university.de/software

The implementation of a traffic shaping detection tool has three components:

– the server side implementation (”BonaFideServer”);

– the client side implementation (”BonaFideClient”);

– the common classes used by the server and the client components (”BonaFide-
Common”);

In order to build the ”BonaFideServer” component the Apache Maven [83]
build automation tool can be used. The project build process is triggered by running
the mvn install command from the source code’s root folder. The ”BonaFide-
Common” and ”BonaFideServer” components are build in this case. The folder
called ”target” will be created inside the ”BonaFideServer” project’s folder that
contains the executable jar file and required dependencies (see Figure A.1).

BonaFideServer/
└── target
    ├── bonafideserver-1.0.0.jar
    └── lib
        ├── bonafidecommon-1.0.0.jar
        ├── jcommander-1.7.jar
        └── log4j-1.2.16.jar

Figure A.1: BonaFideServer component’s build structure

The ”BonaFideServer” project uses two additional dependency libraries:

– log4j is used for logging and printing traces during the program runtime;
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– jcommander – a small java library used for parsing initial program input
parameters;

The server component can be started using the following command, where -p,
-l and -s are program input parameters defined in Table A.1:

java -jar bonafideserver-1.0.0.jar -p 4000 -l list.txt
-s incoming

The set of pre-defined protocol description files is also provided with the source
code (see protocols folder). Modify the list file in order to specify the full path to
protocol description files, and specify the path to list file as -l parameter when you
start the ”BonaFideServer” component.

Note, for starting the server component as a daemon through a SSH session we
need to tell the program to ignore the HUP (hangup) signal, enabling the command
to keep running after the user who issues the command has logged out. For these
purposes we can run ”BonaFideServer” service using the nohup POSIX com-
mand. Or, under the Debian systems, it is possible to use the following command
to daemonise a process:

/sbin/start-stop-daemon

Parameter Description Mandatory
-p port number for running Main Socket no1

-l path to a file which maintains a list of protocols to load yes
-s path to a folder for storing submitted results yes
-v defines logging level no2

Table A.1: BonaFideServer component’s input parameters

To build the ”BonaFideClient” component it is recommended to use the Eclipse
IDE with pre-installed ADT plugin [84], which was specially designed to help in
Android applications development process. However, you can also build and install
the ”BonaFide Provider” application manually using the command line (please re-
fer to the ”Building and running from the command line” [85] tutorial for details).

The client component implementation is an application for the Android OS that
can be installed on any Android-powered mobile device. The final release is named
”BonaFide Provider” and it can be directly installed from the Google Play digital-
distribution multimedia-content service using the following URL:

https://play.google.com/store/apps/details?id=de.jacobs.
university.cnds.bonafide

1Port number 4000 is a default value
2Possible logging level values sorted by priority: OFF, FATAL, ERROR, WARN, INFO, DEBUG,

TRACE. INFO is a default value.
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Figure A.2: BonaFide Provider application QRcode

or using the generated QRcode (see Figure A.2):

During the installation process the ”BonaFide Provider” application asks for the
following permissions:

– android.permission.INTERNET: allows an application to open network
sockets;

– android.permission.ACCESS NETWORK STATE: allows an application
to access information about networks;

– android.permission.WRITE EXTERNAL STORAGE: allows an appli-
cation to write to external storage (SD card);

– android.permission.READ PHONE STATE: allows read only access to
phone state (required to obtain the information about the mobile service op-
erator).
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Appendix B

Pseudocode

Only for client: {
establish a new TCP connection with the main socket
send start new test <protocol name> <number of cycles>
receive UUID
close a TCP connection
measure flow() /* for protocol flow */
measure flow() /* for random flow */

}
Only for server: {
For Random and Protocol sockets:
while true do

accept new TCP connection
create new Thread(measure flow())

end
}

Algorithm 1: Running new measurement test pseudocode.
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if (client) then
for cycle number := 1 to number of cycles do

establish a new TCP connection
inject protocol messages
send UUID and cycle number
/* measure in upload direction */
run measurement cycle(true, true)
/* measure in download direction */
run measurement cycle(false, true)
cycle number++
close a TCP connection

end
end
if (server) then

inject protocol messages
receive UUID and cycle number
/* measure in upload direction */
run measurement cycle(true, false)
/* measure in download direction */
run measurement cycle(false, false)

end
Algorithm 2: Function measure flow() pseudocode.
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input:
boolean measure uplink; true – current cycle measures uplink performance,
false – downlink performance
boolean client: true – function called from the client, false – from the server
initialization: set bulk message size value to minimum value
while true do

if (measure uplink and client) or (!measure uplink and !client) then
inject protocol messages
send bulk message
receive ”OK” notification
calculate RTT
if (RTT ≤ MAX RTT and bulk message size < MAX SIZE) then

increase bulk message size
else

send terminate message
break

end
else

inject protocol messages
receive bulk message
if (bulk message is terminate message) then

break
else

send ”OK” notification
end

end
end

Algorithm 3: Function run measurement cycle() pseudocode.
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input :
U : calculated Mann – Whitney value
Ucritical: critical Mann – Whitney value
Pmean: mean goodput value for Protocol flow
Rmean: mean goodput value for Random flow
Pmax: max goodput value for Protocol flow
σP : sigma value for Protocol flow (level of confidence 95%)
σR: sigma value for Random flow (level of confidence 95%)
output:
decision about the presence of traffic shaping
if (U > Ucritical) then

return NO SHAPING
else

if (Pmean ≥ Rmean) or ((Pmean + σP ) ≥ (Rmean − σR)) then
return NO SHAPING

end
if (Pmean > 0.8 ∗Rmean) or (Pmax ≥ (Rmean − σR)) then

return MOST PROBABLY NOT SHAPING
end
if (0.6 ∗Rmean < Pmean ≤ 0.8 ∗Rmean) then

return MOST PROBABLY SHAPING
end
if (Pmean ≤ 0.6 ∗Rmean) then

return SHAPING
end

end
Algorithm 4: Decision about the presence of traffic shaping pseudocode.
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Appendix C

Verification Test Results

Port Cycle Download Upload
Ud Uu Dintervals UintervalsRF PF RF PF

45006

1

no data no data

1540 timeout

– – – –
2 1538 timeout
3 1542 timeout
4 1541 timeout
5 1538 timeout

45007

1 6883 2805 1540 618

0 0
2 6889 2809 1538 623 Random: Random:
3 6892 2801 1541 622 [6885;6888] [618;621]
4 6880 2810 1543 620 Protocol: Protocol:
5 6885 2809 1544 616 [2808;2809] [1539;1542]

Table C.1: Measured goodput values (in kbps) for BitTorrent and Random flows
on destination ports 45006 and 450071

1Ud – Mann-Whitney U value for the download direction; Uu – Mann-Whitney U value for the
upload direction; Dintervals – 95% confidence intervals for the download direction; Uintervals –
95% confidence intervals for the upload direction;
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Port Cycle Download Upload
Ud Uu Dintervals UintervalsRF PF RF PF

45000

1 7043 7051 1544 1552

2 0
2 7049 7049 1543 1560 Random: Random:
3 7035 7054 1540 1554 [7043;7046] [1540;1543]
4 7046 7052 1541 1548 Protocol: Protocol:
5 7040 7054 1545 1557 [7053;7054] [1552;1555]

45001

1 6981 1012 1539 1016

0 0
2 6988 1015 1541 1016 Random: Random:
3 6992 1012 1538 1017 [6989;6992] [1537;1538]
4 6990 1013 1537 1019 Protocol: Protocol:
5 6885 1012 1535 1016 [1011;1012] [1015;1016]

45002

1 6095 481 1536 483

0 0
2 7003 481 1539 484 Random: Random:
3 7002 481 1539 483 [6997;7010] [1537;1538]
4 6098 481 1538 484 Protocol: Protocol:
5 7005 481 1540 483 [481] [482;483]

45003

1 7008 212 1540 210

0 0
2 7006 212 1541 210 Random: Random:
3 7008 212 1541 211 [7007;7008] [1540;1541]
4 7009 212 1540 210 Protocol: Protocol:
5 7004 212 1541 210 [212;212] [209;210]

45004

1 7026 101 1537 103

0 0
2 7023 101 1538 103 Random: Random:
3 7019 101 1538 103 [7022;7023] [1537, 1538]
4 7022 101 1538 103 Protocol: Protocol:
5 7023 101 1536 103 [101] [103]

45005

1 7018 58 1540 57

0 0
2 7023 58 1542 57 Random: Random:
3 7025 58 1543 56 [7019;7022] [1541;1542]
4 7018 59 1545 57 Protocol: Protocol:
5 7015 58 1541 57 [57;58] [56;57]

Table C.2: Measured goodput values (in kbps) for BitTorrent and Random flows
on destination ports 45000 – 45005
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Appendix D

Mobile Operators Details

Mobile Provider, Maximum Bandwidth Data Limit Reduced Bandwidthtarif-plan name
ALDI Talk (MEDIONMobile),

7.2 Mbps 500MB 56 kbps
Internet-Flatrate M 1GB [79]

NettoKOM,
7.2 Mbps 1 GB 56 kbps

Internet-Flat 1GB [11]

O2, Blue S [12] 7.2 Mbps 300 MB 64 kbps

Congstar,
7.2 Mbps 500 MB

64 kbps download
Surf Flat 500 [13] 16 kbps upload

Table D.1: Details of the tariff plans of mobile networks used during the traffic
shaping detection experiments
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Appendix E

Experiment Results

Here and after, in the measurement results tables the following abbreviations
are used:

RF – Random flow;

PF – Protocol flow;

U – Mann-Whitney U value;

Uc – Mann-Whitney U critical value;

Rm – mean goodput for the Random flow1;

Pm – mean goodput for the Protocol flow;

Rinterval – 95% confidence interval for the Random flow;

Pinterval – 95% confidence interval for the Protocol flow;

1Boundaries of the confidence intervals and the mean values have been rounded to integer values.
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 923 970

8 2 988 [1026;1141] 1084 [930;1045]
2 1102 1195
3 940 1135
4 797 911
5 1164 1149

VoIP-H323

1 1205 1171

10 2 1008 [965;1050] 1157 [1149;1164]
2 1093 1059
3 962 1154
4 804 419
5 971 1148

FlashVideo

1 1132 1135

10 2 1123 [1110;1135] 1183 [1158;1207]
2 1098 1202
3 757 1212
4 1139 969
5 1059 704

HTTP

1 1117 1108

3 2 1110 [1101;1118] 1160 [1142;1177]
2 1104 1195
3 1151 1171
4 915 1126
5 901 1184

SIP

1 1056 1126

10 2 1086 [1055;1116] 1106 [1095;1116]
2 1212 1090
3 1117 1123
4 1045 577
5 1198 1087

RTSP

1 1117 534

11 2 999 [939;1058] 1147 [1121;1172]
2 958 285
3 923 1195
4 1205 1135
5 843 1111

Table E.1: The results of measurements made on the ALDITalk’s HSPA mobile
network in the download direction during the daytime (1PM – 2PM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 756 1015

8 2 1236 [1232;1239] 1253 [1248;1257]
2 1241 1245
3 1231 1257
4 1238 1257
5 1209 1205

VoIP-H323

1 1208 1171

12 2 1160 [1134;1185] 1175 [1172;1177]
2 1261 1180
3 985 958
4 1154 1201
5 1120 1174

FlashVideo

1 1265 1205

12 2 1191 [1182;1199] 1215 [1202;1227]
2 1205 1239
3 1174 1201
4 1208 1245
5 1178 1139

HTTP

1 1250 1245

10 2 1255 [1249;1252] 1251 [1249;1252]
2 1261 1253
3 1241 1249
4 1087 813
5 1269 1253

SIP

1 1253 1249

11 2 1184 [1175;1192] 1209 [1190;1227]
2 1167 1160
3 1191 1027
4 1154 1191
5 1195 1227

RTSP

1 802 1076

9 2 1210 [1192;1227] 1145 [1109;1180]
2 1209 1043
3 932 737
4 1242 1168
5 1181 1191

Table E.2: The results of measurements made on the ALDITalk’s HSPA mobile
network in the upload direction during the daytime (1PM – 2PM).
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 1084 1000

10 2 1094 [1083;1104] 1068 [1061;1074]
2 1104 1070
3 1151 1078
4 1020 1056
5 1015 1108

VoIP-H323

1 1117 1129

10 2 1108 [1100;1115] 1084 [1061;1106]
2 1130 1155
3 1093 1030
4 1056 1056
5 1114 1067

FlashVideo

1 1174 1142

5 2 1164 [1158;1169] 1128 [1119;1136]
2 1154 1114
3 1151 1198
4 1181 1090
5 1164 1129

HTTP

1 1178 1138

11 2 1136 [1110;1161] 1141 [1138;1143]
2 1070 1093
3 1089 1123
4 1184 1145
5 1142 1142

SIP

1 1107 1135

8 2 1124 [1106;1141] 1138 [1135;1140]
2 1062 1136
3 1188 1144
4 1141 1143
5 1059 1125

RTSP

1 1120 1135

8 2 1093 [1090;1095] 1148 [1141;1154]
2 1150 1156
3 1098 1045
4 1093 1154
5 1090 1108

Table E.3: The results of measurements made on the ALDITalk’s HSPA mobile
network in the download direction during the nighttime (4AM – 5AM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 1253 1246

11 2 1241 [1235;1246] 1249 [1246;1251]
2 1234 1237
3 1238 1249
4 1269 1253
5 1220 1199

VoIP-H323

1 1234 1198

10 2 1236 [1233;1238] 1259 [1255;1262]
2 1242 1260
3 1249 1264
4 1227 1220
5 1234 1253

FlashVideo

1 1261 1246

8 2 1257 [1252;1261] 1248 [1243;1252]
2 1216 1242
3 1249 1261
4 1253 1205
5 1265 1257

HTTP

1 1265 1245

12 2 1233 [1230;1235] 1236 [1234;1237]
2 1230 1230
3 1235 1265
4 1243 1238
5 1237 1232

SIP

1 1216 1226

7 2 1230 [1225;1234] 1227 [1223;1230]
2 1235 1222
3 1226 1234
4 1261 1250
5 1257 1210

RTSP

1 1261 1135

7 2 1259 [1257;1260] 1254 [1250;1257]
2 1270 1267
3 1249 1242
4 1261 1249
5 1261 1253

Table E.4: The results of measurements made on the ALDITalk’s HSPA mobile
network in the upload direction during the nighttime (4AM – 5AM).
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 1132 1108

9 2 1141 [1135;1146] 1097 [1090;1103]
2 1145 1132
3 1148 1087
4 1178 1205
5 995 1096

VoIP-H323

1 1195 1110

7 2 1140 [1135;1146] 1196 [1137;1142]
2 1139 1205
3 1145 1195
4 1138 1184
5 1164 1198

FlashVideo

1 1126 1009

6 2 1124 [1119;1128] 1108 [1105;1110]
2 1017 1113
3 1102 1009
4 1131 1108
5 1117 1104

HTTP

1 1134 932

9 2 1132 [1123;1140] 1136 [1129;1142]
2 1145 1084
3 1117 1141
4 1174 1123
5 967 1145

SIP

1 1198 1025

6 2 1119 [1107;1130] 1066 [1024;1107]
2 1120 816
3 1099 782
4 1063 1198
5 1138 1108

RTSP

1 443 907

8 2 1027 [1016;1037] 1108 [1100;1115]
2 971 1122
3 1008 1098
4 1029 1106
5 1045 930

Table E.5: The results of measurements made on the NettoKOM’s HSPA mobile
network in the download direction during the daytime (3PM – 4PM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 1004 1238

7 2 1230 [1221;1238] 1229 [1212;1245]
2 1019 1174
3 1245 1198
4 1227 1253
5 1220 1257

VoIP-H323

1 1249 1257

8 2 1261 [1248;1253] 1251 [1258;1263]
2 1265 1238
3 1084 1249
4 1261 1249
5 1257 1261

FlashVideo

1 1215 1037

8 2 1123 [1118;1127] 1159 [1143;1174]
2 1126 1167
3 940 1220
4 1129 1181
5 1116 1129

HTTP

1 1110 1093

10 2 1194 [1180;1207] 1200 [1187;1212]
2 1206 1212
3 1009 1188
4 1209 1090
5 967 1220

SIP

1 1227 957

8 2 1208 [1189;1226] 1255 [1251;1258]
2 1171 1259
3 717 945
4 1067 1257
5 1227 1249

RTSP

1 1201 1167

12 2 1143 [1113;1172] 1078 [1055;1100]
2 1123 1059
3 1105 985
4 446 1123
5 864 1054

Table E.6: The results of measurements made on the NettoKOM’s HSPA mobile
network in the upload direction during the daytime (3PM – 4PM).
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 969 940

9 2 1036 [975;1096] 926 [918;933]
2 1157 915
3 983 985
4 875 923
5 1212 1144

VoIP-H323

1 1151 1181

12 2 1169 [1149;1188] 1141 [1119;1162]
2 1012 1234
3 1010 953
4 1188 1110
5 1205 1132

FlashVideo

1 1177 1212

10 2 1176 [1159;1192] 1143 [1104;1181]
2 1148 907
3 555 1181
4 840 944
5 1205 1105

HTTP

1 1212 988

8 2 1076 [1064;1087] 926 [874;977]
2 1099 825
3 1062 967
4 1067 1138
5 350 466

SIP

1 1081 1114

12 2 1103 [1079;1126] 1024 [976;1071]
2 1161 953
3 923 1007
4 1126 736
5 893 1167

RTSP

1 1099 1073

8 2 1074 [1044;1103] 1043 [979;1106]
2 456 843
3 1015 923
4 1108 1161
5 713 1135

Table E.7: The results of measurements made on the NettoKOM’s HSPA mobile
network in the download direction during the nighttime (12AM – 1AM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 1245 589

8 2 1245 [1242;1247] 1233 [1224;1241]
2 1249 1216
3 1216 1242
4 1168 1171
5 1241 1242

VoIP-H323

1 1208 1177

11 2 1226 [1215;1236] 1221 [1218;1223]
2 1249 1223
3 1184 1257
4 1230 1219
5 1242 1223

FlashVideo

1 676 858

10 2 963 [851;1074] 1214 [1196;1231]
2 1253 681
3 1174 1181
4 923 1227
5 793 1234

HTTP

1 1249 1129

11 2 1234 [1225;1242] 1111 [1064;1157]
2 1220 1249
3 1004 989
4 1234 1181
5 883 1024

SIP

1 1184 913

10 2 1215 [1200;1229] 1232 [1225;1238]
2 1242 1234
3 1238 1241
4 1005 955
5 1198 1223

RTSP

1 1234 1223

8 2 1240 [1231;1248] 1216 [1212;1219]
2 1231 1220
3 1257 1265
4 1265 1213
5 874 1209

Table E.8: The results of measurements made on the NettoKOM’s HSPA mobile
network in the upload direction during the nighttime (12AM – 1AM).
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 317 357

12 2 317 [316;317] 318 [310;325]
2 348 328
3 318 322
4 319 305
5 317 290

H323

1 299 283

12 2 303 [297;326] 318 [299;306]
2 296 297
3 274 304
4 350 340
5 341 308

FlashVideo

1 306 314

11 2 314 [304;315] 310 [307;320]
2 320 337
3 335 325
4 304 304
5 273 292

HTTP

1 303 355

11 2 305 [302;307] 317 [313;320]
2 333 324
3 328 312
4 310 316
5 303 300

SIP

1 311 17

0 2 313 [310;315] 16 [15;16]
2 344 16
3 324 13
4 318 17
5 311 15

RTSP

1 319 313

10 2 319 [318;319] 322 [316;327]
2 319 321
3 319 332
4 319 360
5 316 308

Table E.9: The results of measurements made on the Congstar’s HSPA mobile
network in the download direction during the evening (7PM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 32 333

12 2 332 [328;335] 332 [331;332]
2 336 329
3 333 336
4 335 331
5 326 332

H323

1 338 335

6 2 324 [320;327] 333 [332;333]
2 321 332
3 316 326
4 321 335
5 331 332

FlashVideo

1 334 320

10 2 332 [330;333] 327 [324;329]
2 330 331
3 332 324
4 318 340
5 337 328

HTTP

1 333 334

8 2 332 [331;332] 331 [328;333]
2 333 334
3 320 337
4 331 322
5 328 327

SIP

1 329 5

0 2 332 [331;332] 5 [5]
2 332 5
3 320 5
4 332 5
5 328 5

RTSP

1 27 25

12 2 324 [317;330] 28 [23;32]
2 315 28
3 30 32
4 332 330
5 325 338

Table E.10: The results of measurements made on the Congstar’s HSPA mobile
network in the upload direction during the evening (7PM).
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Direction Cycle RF PF U Uc Rm Rinterval Pm Pinternal

Download

1 5073 5471

5 2 5569 [5544;5593] 4927 [4646;5207]
2 5481 4540
3 5545 5650
4 5689 4770
5 5593 4369

Upload

1 356 355

12 2 354 [353;354] 355 [354;355]
2 355 357
3 340 341
4 352 355
5 354 337

Table E.11: SIP protocol measurement test results on Congstar’s HSPA mobile
network during the morning hours (9AM).
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 76 121

12 1 94 [91;96] 93 [91;94]
2 95 93
3 113 95
4 timeout 69
5 93 93

VoIP-H323

1 94 71

7 1 95 [92;97] 71 [69;72]
2 reset 53
3 96 126
4 119 72
5 59 70

FlashVideo

1 123 102

8 2 123 [121;122] 122 [120;125]
2 123 49
3 126 122
4 122 128
5 62 120

HTTP

1 115 67

7 2 113 [111;114] 115 [113;116]
2 112 117
3 70 115
4 113 132
5 114 115

SIP

1 118 124

11 2 107 [105;108] 118 [114;121]
2 110 58
3 58 114
4 107 118
5 105 85

RTSP

1 64 101

8 2 124 [121;126] 117 [115;118]
2 120 63
3 82 116
4 127 116
5 125 119

Table E.12: The results of measurements made on the ALDITalk’s EDGE mobile
network in the download direction during the daytime (10AM and 1PM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 92 88

5 1 90 [88;91] 87 [86;87]
2 90 86
3 reset 55
4 89 88
5 53 87

VoIP-H323

1 92 87

7 1 75 [73;76] 87 [86;87]
2 timeout 89
3 62 87
4 74 49
5 76 93

FlashVideo

1 95 76

3 2 80 [78;81] 77 [75;78]
2 57 76
3 79 78
4 81 54
5 82 55

HTTP

1 52 88

3 2 86 [85;86] 86 [84;87]
2 87 85
3 89 77
4 87 51
5 86 85

SIP

1 89 48

8 2 86 [84;87] 76 [75;76]
2 86 76
3 84 76
4 50 78
5 70 79

RTSP

1 66 60

3 2 93 [91;94] 82 [80;83]
2 95 82
3 91 52
4 88 83
5 94 81

Table E.13: The results of measurements made on the ALDITalk’s EDGE mobile
network in the upload direction during the daytime (10AM and 1PM).
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 135 120

7 2 135 [134;135] 124 [121;126]
2 135 129
3 136 134
4 122 123
5 120 121

VoIP-H323

1 133 132

6 2 132 [131;132] 132 [130;133]
2 130 134
3 132 123
4 134 122
5 132 132

FlashVideo

1 139 133

4 2 136 [134;137] 133 [132;133]
2 140 135
3 134 136
4 135 133
5 135 133

HTTP

1 132 130

5 2 131 [130;131] 133 [132;133]
2 131 133
3 131 135
4 131 134
5 132 133

SIP

1 12 133

9 2 132 [130;133] 133 [132;133]
2 130 122
3 135 133
4 133 134
5 120 135

RTSP

1 123 133

12 2 135 [134;135] 132 [131;132]
2 134 137
3 136 132
4 24 132
5 135 133

Table E.14: The results of measurements made on the ALDITalk’s EDGE mobile
network in the download direction during the nighttime (1AM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 93 90

7 2 93 [92;93] 91 [90;91]
2 97 93
3 91 89
4 93 91
5 93 92

VoIP-H323

1 89 93

10 2 91 [90;91] 91 [90;91]
2 91 92
3 93 91
4 91 91
5 92 91

FlashVideo

1 95 94

8 2 94 [93;94] 94 [93;94]
2 94 94
3 94 93
4 94 95
5 94 95

HTTP

1 95 93

1 2 95 [94;95] 93 [92;93]
2 94 93
3 96 94
4 95 93
5 95 95

SIP

1 5 90

11 2 94 [92;95] 93 [92;93]
2 94 94
3 97 95
4 92 94
5 94 93

RTSP

1 92 93

7 2 92 [90;93] 93 [92;93]
2 91 92
3 95 95
4 7 94
5 92 95

Table E.15: The results of measurements made on the ALDITalk’s EDGE mobile
network in the upload direction during the nighttime (1AM).

90



Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 115 150

12 2 138 [128;147] 147 [144;149]
2 152 143
3 142 165
4 121 149
5 167 88

VoIP-H323

1 130 143

5 2 129 [128;129] 142 [139;144]
2 120 70
3 130 139
4 129 146
5 74 150

FlashVideo

1 134 140

4 2 132 [130;133] 137 [135;138]
2 133 135
3 134 154
4 130 98
5 88 136

HTTP

1 150 67

4 1 147 [145;148] 140 [138;141]
2 146 139
3 reset 141
4 145 142
5 91 131

SIP

1 135 142

9 2 132 [130;133] 133 [126;139]
2 122 182
3 83 138
4 130 120
5 131 82

RTSP

1 159 128

5 2 147 [145;148] 125 [124;125]
2 145 125
3 62 101
4 148 122
5 150 125

Table E.16: The results of measurements made on the NettoKOM’s EDGE mobile
network in the download direction during the daytime (9AM –10AM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 81 62

10 2 45 [43;46] 44 [42;45]
2 46 47
3 45 45
4 16 12
5 46 42

VoIP-H323

1 34 49

11 2 44 [43;44] 45 [44;45]
2 58 45
3 44 45
4 44 46
5 45 22

FlashVideo

1 81 47

11 2 45 [42;47] 45 [43;46]
2 80 44
3 46 44
4 27 30
5 45 56

HTTP

1 52 16

11 1 47 [44;49] 46 [45;46]
2 46 46
3 timeout 46
4 44 48
5 30 45

SIP

1 45 45

12 2 45 [44;45] 45 [44;45]
2 44 32
3 46 46
4 25 45
5 46 50

RTSP

1 39 23

4 2 38 [37;38] 43 [42;43]
2 37 42
3 19 44
4 38 43
5 31 44

Table E.17: The results of measurements made on the NettoKOM’s EDGE mobile
network in the upload direction during the daytime (9AM –10AM).
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 187 190

8 2 184 [181;186] 188 [186;189]
2 186 163
3 147 148
4 180 189
5 110 186

VoIP-H323

1 126 137

9 2 180 [177;182] 138 [126;149]
2 181 120
3 183 115
4 122 187
5 176 158

FlashVideo

1 183 96

8 2 178 [173;182] 178 [173;182]
2 183 178
3 170 125
4 187 171
5 167 186

HTTP

1 26 170

9 2 180 [176;183] 165 [159;170]
2 178 125
3 186 190
4 187 118
5 172 161

SIP

1 164 11

9 2 179 [174;183] 182 [180;183]
2 187 170
3 185 183
4 170 180
5 182 183

RTSP

1 128 183

6 2 121 [117;124] 187 [184;189]
2 166 126
3 119 187
4 151 127
5 117 191

Table E.18: The results of measurements made on the NettoKOM’s EDGE mobile
network in the download direction during the nighttime (12AM – 1AM).
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 41 46

5 2 46 [45;46] 45 [44;45]
2 46 46
3 46 42
4 46 42
5 46 46

VoIP-H323

1 41 46

12 2 46 [45;46] 46 [45;46]
2 46 47
3 46 45
4 46 46
5 46 47

FlashVideo

1 45 46

2 2 46 [45;46] 45 [44;45]
2 46 44
3 46 5
4 46 45
5 45 45

HTTP

1 67 94

11 2 45 [43;46] 45 [43;46]
2 45 46
3 46 46
4 46 47
5 12 44

SIP

1 16 32

6 2 45 [44;45] 45 [43;46]
2 46 44
3 44 16
4 46 46
5 46 46

RTSP

1 43 46

12 2 45 [44;45] 45 [44;45]
2 45 46
3 46 93
4 42 29
5 46 44

Table E.19: The results of measurements made on the NettoKOM’s EDGE mobile
network in the upload direction during the nighttime (12AM – 1AM).
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 52 54

6 2 52 [51;52] 53 [52;53]
2 53 51
3 52 54
4 50 54
5 53 53

VoIP-H323

1 52 54

6 2 51 [50;51] 53 [52;53]
2 52 50
3 51 54
4 49 53
5 53 53

FlashVideo

1 54 53

4 2 54 [53;54] 52 [51;52]
2 54 51
3 51 53
4 56 53
5 55 52

HTTP

1 52 52

11 2 53 [52;53] 53 [52;53]
2 55 55
3 54 54
4 54 54
5 51 53

SIP

1 54 53

11 2 54 [53;54] 54 [53;54]
2 54 55
3 53 54
4 54 56
5 53 54

RTSP

1 54 52

0 2 53 [52;53] 53 [52;53]
2 55 53
3 53 53
4 53 53
5 53 53

Table E.20: The results of measurements made on the NettoKOM’s HSPA mo-
bile network in the download direction during the daytime (10AM) after the user
crossed the data limit.
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 23 21

7 2 25 [23;26] 24 [23;24]
2 22 23
3 28 25
4 27 25
5 27 24

VoIP-H323

1 25 25

4 2 25 [24;25] 25 [24;25]
2 25 24
3 27 25
4 25 25
5 24 25

FlashVideo

1 27 23

0 2 27 [26;27] 24 [23;24]
2 26 24
3 26 24
4 27 25
5 27 26

HTTP

1 21 22

6 2 25 [24;25] 22 [21;22]
2 25 22
3 26 25
4 24 21
5 28 25

SIP

1 23 27

6 2 25 [22;23] 22 [24;25]
2 19 25
3 25 26
4 23 20
5 24 25

RTSP

1 21 25

6 2 23 [22;23] 26 [25;26]
2 23 26
3 23 26
4 27 26
5 25 26

Table E.21: The results of measurements made on the NettoKOM’s HSPA mobile
network in the upload direction during the daytime (10AM) after the user crossed
the data limit.
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 54 55

4 2 55 [54;55] 53 [52;53]
2 56 52
3 55 53
4 54 55
5 55 53

VoIP-H323

1 53 54

9 2 53 [52;53] 53 [52;53]
2 52 53
3 53 53
4 55 54
5 55 53

HTTP

1 55 55

9 2 55 [54;55] 54 [53;54]
2 55 56
3 54 55
4 54 53
5 55 54

SIP

1 55 52

0 2 56 [55;56] 52 [51;52]
2 56 53
3 55 55
4 56 53
5 56 52

RTSP

1 53 54

8 2 55 [53;54] 54 [53;54]
2 55 56
3 55 54
4 54 54
5 54 52

Table E.22: The results of measurements made on the ALDITalk’s HSPA mo-
bile network in the download direction during the daytime (11AM) after the user
crossed the data limit.
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 54 51

5 2 54 [53;54] 53 [52;53]
2 55 55
3 55 54
4 53 54
5 54 53

VoIP-H323

1 52 54

5 2 53 [52;53] 54 [53;54]
2 53 55
3 55 55
4 53 54
5 53 54

HTTP

1 52 55

8 2 53 [52;53] 53 [52;53]
2 55 53
3 55 52
4 54 53
5 53 55

SIP

1 55 54

4 2 54 [53;54] 54 [53;54]
2 53 54
3 55 53
4 54 54
5 54 54

RTSP

1 54 55

10 2 55 [55] 54 [53;54]
2 55 55
3 54 55
4 54 55
5 55 55

Table E.23: The results of measurements made on the ALDITalk’s HSPA mobile
network in the upload direction during the daytime (11AM) after the user crossed
the data limit.
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Protocol Cycle Download
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 59 62

11 2 59 [58;59] 59 [58;59]
2 61 60
3 59 59
4 58 58
5 59 59

VoIP-H323

1 56 63

9 2 60 [59;60] 60 [59;60]
2 60 60
3 62 58
4 60 60
5 60 60

HTTP

1 59 61

11 2 59 [58;59] 59 [58;59]
2 58 63
3 59 59
4 60 58
5 62 59

SIP

1 59 58

10 2 61 [59;62] 59 [58;59]
2 57 60
3 62 59
4 63 63
5 63 60

RTSP

1 63 57

5 2 60 [59;60] 58 [57;58]
2 60 58
3 60 58
4 58 63
5 61 59

Table E.24: The results of measurements made on the O2’s HSPA mobile network
in the download direction during the daytime (2PM) after the user crossed the data
limit.
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Protocol Cycle Upload
U Uc Rm Rinterval Pm PinternalRF PF

BitTorrent

1 29 25

7 2 24 [23;24] 24 [23;24]
2 24 25
3 23 24
4 25 24
5 25 24

VoIP-H323

1 26 26

3 2 26 [25;26] 26 [25;26]
2 26 26
3 26 25
4 25 25
5 26 26

HTTP

1 22 25

8 2 24 [23;24] 25 [24;25]
2 25 23
3 24 24
4 25 25
5 26 25

SIP

1 25 25

3 2 25 [24;25] 24 [23;24]
2 24 24
3 25 24
4 24 24
5 26 22

RTSP

1 24 27

6 2 25 [24;25] 26 [25;26]
2 24 25
3 25 26
4 25 26
5 25 26

Table E.25: The results of measurements made on the O2’s HSPA mobile network
in the upload direction during the daytime (2PM) after the user crossed the data
limit.
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Protocol Cycle Download
U Uc Rm Rinterval Pm Pinternal TimeRF PF

BitTorrent

1 760 752

9 2 745 [737;752] 772 [750;793] 8 PM
2 730 978
3 739 987
4 754 793
5 953 652

VoIP-H323

1 610 989

5 2 684 [682;685] 703 [698;707] 8 PM
2 1050 698
3 685 710
4 683 702
5 685 797

FlashVideo

1 5744 6133

7 2 5797 [5792;5801] 6095 [6087;6102] 3 AM
2 5802 6045
3 6089 6089
4 6047 5748
5 5793 6102

HTTP

1 5833 6028

11 2 5841 [5832;5849] 6043 [6033;6052] 3 AM
2 5857 6046
3 6078 6057
4 5833 1015
5 23 5703

SIP

1 1420 1647

10 2 1509 [1453;1564] 1594 [1544;1643] 3 PM
2 1408 2028
3 2023 1497
4 1612 1640
5 1596 1408

RTSP

1 1532 1647

6 2 1497 [1487;1506] 1495 [1476;1513] 3 PM
2 1934 1438
3 2088 1550
4 1514 1480
5 1487 1474

Table E.26: The results of measurements made on the MTS’s (Belarus) HSPA mo-
bile network in the download direction.
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Protocol Cycle Upload
U Uc Rm Rinterval Pm Pinternal TimeRF PF

BitTorrent

1 2001 1403

12 2 1979 [1965;1992] 1898 [1890;1905] 8 PM
2 5 2002
3 1548 1756
4 1978 1893
5 1958 1903

VoIP-H323

1 1789 2019

12 2 1691 [1565;1816] 1940 [1869;2010] 8 PM
2 2104 1800
3 1442 2002
4 1842 2319
5 1331 1420

FlashVideo

1 1932 1904

11 2 1839 [1815;1862] 1865 [1844;1885] 3 AM
2 1801 1834
3 1883 1859
4 1402 29
5 1833 1410

HTTP

1 2169 1822

3 2 1903 [1876;1929] 1782 [1756;1807] 3 AM
2 1877 1789
3 1956 1735
4 1878 629
5 1566 1432

SIP

1 2137 1755

11 2 2172 [2136;2207] 2236 [2123;2348] 3 PM
2 1911 2012
3 1944 4
4 2352 2334
5 2207 2363

RTSP

1 1995 2400

3 2 1929 [1902;1955] 1999 [1980;2017] 3 PM
2 1922 1972
3 1888 2035
4 1977 1990
5 1777 2093

Table E.27: The results of measurements made on the MTS’s (Belarus) HSPA mo-
bile network in the upload direction.

102



Direction Cycle RF PF U Uc Rm Rinterval Pm Pinternal

Download

1 1846 966

12 2 1846 [1843;1848] 1788 [1725;1850]
2 1850 1217
3 1842 1852
4 1810 1849
5 842 1664

Upload

1 1846 966

10 2 855 [843;874] 859 [849;860]
2 1850 1217
3 1842 1852
4 1810 1849
5 842 1664

Table E.28: The results of the BitTorrent protocol measurements made on the
LUXGSM’s (Luxemburg) HSPA mobile network during the daytime (12PM).

Direction Cycle RF PF U Uc Rm Rinterval Pm Pinternal

Download

1 335 341

6 2 309 [302;315] 326 [318;333]
2 317 294
3 316 349
4 280 319
5 296 320

Upload

1 955 1023

11 2 309 [843;874] 326 [849;860]
2 1003 1001
3 1017 1009
4 856 767
5 985 975

Table E.29: The results of the HTTP protocol measurements made on the AT&T’s
(USA) HSPA mobile network during the daytime (3PM).
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