Real-Time Communications for the Web

Presentation of paper by: Cullen Jennings, Ted Hardie, Magnus Westerlund
What is the paper about?

- Describes a peer-to-peer architecture that allows “direct, interactive, rich communications between browsers and other clients”, called **WebRTC**:
 - Core components enabled are peer-to-peer audio and video streams, and a multiplexing peer-to-peer data channel
 - Aims to be an open standard, in order to foster innovation
 - Makes use of RTP, SDP, SCTP over DTLS to overcome transportation and security challenges
 - (Real-Time Transport Protocol)
 - (Session Description Protocol)
 - (Stream Control Transmission Protocol)
 - (Datagram Transport Layer Security)
Very simply put …
(At least) 3 parties participate:
- An application provider (web server);
- Two peers (web browsers or other web applications);
How does it happen?

- Each peer downloads a JavaScript application into a local web context (browser or mobile app);

- JavaScript app uses WebRTC API to communicate with local context:
 - peer identifies local media sources as set of “tracks”
 - negotiates connection set-up to other peer
 - passes media along connection …
API Overview

- **GetUserMedia**
 - returns a MediaStream (local media resources organized into tracks)

- **RTCPeerConnection**
 - communications channel between peers
 - adding a MediaStream to the channel triggers negotiation with peer
 - no particular protocol or function mandated for peer rendezvous
 - local info is gathered and assembled ,through API, as a SDP offer
 - created data channels use underlying transport built as SCTP over DTLS over UDP
 - A connection involves one pair of peers,but a peer can have multiple connections with the same stream
Security Challenges

- JavaScript can be downloaded from any site without user consent.
- Users must be able to consent to the usage of media resources such as cameras and microphones.
- No significant amount of network traffic must be transmitted without consent from the destination.
- Confidentiality and authentication must be provided for any transmitted media to prevent man-in-the-middle attacks and eavesdropping.
- User private info (identity, geographical location) must not be disclosed when not desired.
And how they are handled

- Premise is that web browser or WebRTC implementation functions as trusted computing base

- Together with encrypted and authenticated transport of data;

- Hooks for third-party users can prevent man-in-the-middle attacks;

- Congestion control prevents unfair bandwidth sharing.
Communication Consent
- communication for each flow is verified using STUN binding req/resp pairs;
- use browser-generated secret and 96-bit random transaction identifiers;
- Continuously verified every 30 s

Identity
- “Proxy” in browser – user free to choose identity provider (for ex can be login or cookies)
- an assertion binds DTLS-SRTP fingerprint with user identity
- other side checks fingerprint against assertion info
Transportation

- For **Real-Time media transport**, WebRTC would use Secure RTP profile for RTCP-Based Feedback.
- Key management for SRTP provided by DTLS-SRTP.
- Also a number of standalone extensions …
 - Full Intra Request – joining conferences and switching between media sources;
 - Client-to-mixer audio levels;
 - …
For arbitrary data transport:

- WebRTC provides reliable and semi-reliable message service, including multiple channels, with prioritization support, between peers.
- Realized using SCTP with extensions
- Packets sent over DTLS association, run over lower-layer transport flow, commonly UDP;

Layering maximizes establishment of direct peer-to-peer data channel, using ICE (Interactive Connectivity Establishment)
Transportation Challenges

- NAT and firewall traversal
- Data and Media Multiplexing
- Congestion Control
NAT and Firewall Traversal

- “hole-punching”
 - send STUN packet outside NAT
 - discover IP and port outside NAT
 - works as long as NAT has “endpoint-independent behavior”
 - results in high-quality, cheap connection, but does not work all the time

- media relay box
 - use external media relay box
 - TURN protocol
 - adds latency and jitter to media, but works more often

- ICE protocol finds best possible flow
ICE Protocol

- Try both previous methods, choose best flow
 - both clients assemble a list of possible “flows”
 - candidate flows are tested in order by both sides by sending STUN messages and waiting for a reply
 - best working candidate is chosen
Data and Media Multiplexation

- WebRTC enables multiplexing all RTP media streams and data on a single lower-layer transport flow
 - minimizes risk of NAT and firewall traversal failures
 - fare sharing between data and real-time media

BUT

- prevents flow-based QoS being applied to sub-flows

However, multiplexation with one flow per RTB session or channel is also supported.

Low-level mechanism most probably UDP.
Demultiplexation over one single UPD flow
- done by looking at the value of the first byte of the UDP payload
 - 0 or 1 – STUN packet
 - 20-63 – DTLS packet
 - 128-191 – SRTP/SRTCP packet

Implications for using RTP (multiple media types in one RTP session ?)
Congestion Control

- Data channel uses SCTP

- Media channel – is still an open question
 - keep delay and losses low, but provide some kind of fairness
Media Negotiation and Encoding

- Media negotiation using RFC 3264 offer/answer approach
 - basically SDP to exchange media capabilities
 - using SIP
 - SDP negotiates RTP media transport as well as SCTP data channels
 - SDP offer created when adding MediaStreams to the Channel (remember the API?)

- Media Encoding
 - Negotiation of codecs possible through RTP/SDP, but some codecs mandatory to implement
Conclusions

- WebRTC is an attempt to create an “open eco-system” that facilitates deployment and development of peer-to-peer realtime applications.

- At the moment of writing (April 2013), WebRTC implemented in some browsers

- Right now, WebRTC API is available in:
 - the latest stable version of Chrome
 - the latest stable version of Firefox
 - the latest stable version of Opera

- Tools, resources and tutorials are available at www.webrtc.org
Research Questions

- Real-Time media congestion control?
- (RMCAT Working Group)

- Implications of user consent being used to grant access to local media resources?

- Overall Security Framework Review?