Information Dissemination in a WSN: The Trickle Algorithm

Anuj Sehgal
s.anuj@jacobs-university.de

Internet of Things Lab (320414)
Prof. Dr. Jürgen Schönwälder
Fall 2013
Information Dissemination

- Long lifetimes = re-tasking.
- Spectrum of re-tasking.
 - Binary images.
 - High-level virtual programs.
 - Parameter setting.
- Install on every node.
 - Packet loss.
 - Transient disconnection.
 - Nodes have correct code?

- Binaries: 10-60 kB.
- Virtual programs: 20-400 B.
- Parameters: 8-30 B.
- With 6LoWPAN, even larger!
- Multi-hop networks.
 - Reach every node.
Periodicity

- Checking if everyone has the right data can be expensive.
- Dissemination timing can lead to high costs.
- What is the appropriate transmission rate? *(density, RDC, mobility)*
- Idle network costs? *(re-transmissions, advertisements)*

- Continuously detect which nodes need updates.
- Maintenance cost should be near zero. *(suppress control messages)*
- Propagation should be rapid.
Solution: Trickle

- Time interval of length τ.
- Redundancy constant k.
- Maintain a counter c.
 - Initialize to 0.
- Pick a time t between $[0, \tau]$.
- At time t, broadcast code metadata if $c < k$.
- If you receive identical metadata, increment c.
- At end of τ, pick a new t.
Trickle Example

![Diagram showing trickle example with time axis and nodes labeled 1, 2, and 3. The diagram illustrates transmission and suppression of transmission with time interval \(\tau \).]
Trickle Example

\[t_{1a} \]

\[\tau \]

transmission suppressed transmission reception

1 2 3
Trickle Example

\[t_{1a} \]

transmission

suppressed transmission

reception
Trickle Example

1. Transmission
2. Suppressed transmission
3. Reception
Trickle Example

\[k = 1 \]

![Diagram showing the concept of trickle transmission](image)
Trickle Example

\[k=1 \]

\[c \]

1

2

3

\[t_{1a} \]

\[t_{2a} \]

\[t_{3a} \]

\[\tau \]

transmission

suppressed transmission

reception

Jacobs University Bremen
Trickle Example

\[t_1^a \]
\[t_2^a \]
\[t_3^a \]

transmission
suppressed transmission
reception

\[k=1 \]
Trickle Example

1. Transmission
2. Suppressed transmission
3. Reception

\[k = 1 \]

- \(t_{1a} \)
- \(t_{2a} \)
- \(t_{2b} \)
- \(t_{3a} \)

Time \(\tau \)
Trickle Example

\[k=1 \]

\[\tau \]

\[t_{1a} \quad t_{2a} \quad t_{2b} \quad t_{3a} \quad t_{3b} \]

transmission suppressed transmission reception
Trickle Example

1. Transmission
2. Suppressed transmission
3. Reception
Some nodes don’t listen often.

- Small t values.

E.g., B transmits three times.
• Add a listening period.
 - Pick t from $[0.5\tau, \tau]$.
Choosing Intervals

- Large interval: *low cost, slow to propagate*.
- Small interval: *high cost, quick to propagate*.

New gossip? *Talk more.*

Nothing new? *Talk less.*
Speeding Propagation

- Adjust τ: τ_1, τ_h.
- When τ expires, double τ up to τ_h.
- When you hear newer metadata, set τ to τ_1.
- If you hear older metadata, send an update.

![Diagram showing the process of speeding propagation with time intervals τ_h, τ_1, and $\tau_h/2$.]
Conclusions

• Trickle efficiency scales logarithmically with density.
• Can obtain rapid propagation with low maintenance.
• Uses beyond code propagation.
 ▪ Changes to data such as routing tables
• What are the effects of changing τ_l, τ_h and k?
