

Heuristic Search using a Feedback Scheme in Unstructured Peer-to-Peer Networks

Ha Manh Tran and Jürgen Schönwälder Computer Science, Jacobs University Bremen, Germany

International Workshop on Databases, Information Systems and Peer-to-Peer Computing University of Vienna, 24 September 2007

DARING: Distributed Case-based Reasoning System

- Assisting network operators in resolving faults in large-scale, diverse communication systems
- Searching for solutions by previous experience sharing in decentralized environments
 - P2P to explore ubiquitous fault cases
 - CBR to exploit relevant fault cases

DARING Overview

- Unstructured P2P network overlay
 - Search performance issue
- Super peers bearing CBR engines
 - Reasonable bandwidth and power processing

- CBR engines proposing faultmatching solutions (proposed solutions)
 - Local case database and reasoning engine
 - High computational resource consumption

Heuristic Search in DARING

- Finding solutions:
 - Flooding the overlay is avoided
 - Proposed solutions are probably incorrect
 - Finding promising peers by looking at their previously accepted solutions
- Using a feedback scheme to announce the accepted solutions to peers

Feedback Scheme

- A querying peer verifies and accepts solutions among fault-matching solutions, then feedback the accepted solutions to specific peers.
- Upon receiving the feedback, any peer learns solutions and peers for subsequent queries

Algorithms

- Peer learning
 - Learning from feedback
 - Updating the lists of good peers (expertise values) and queries (query information)
- Peer ranking
 - Finding similar queries and corresponding peers
 - Ranking these peers
- Peer selection
 - Selecting peers from lists of good peers, recently active peers, and random peers in order
 - At least, one random peer

Similarity Function

- Learning and ranking algorithms
- Field-value pairs presentation
- Ordered Weighted Averaging [Ronald Yager 1988]

$$sim(q,c)=\sum w_i sim_{\sigma(i)}(q_i,c_i)$$

q_i,c_i: field i;

 w_i : weight i (a monotonic function satisfying $\sum w_i = 1$)

 $sim_{\sigma(i)}(q_i,c_i)$: distance of q_i,c_i following a permutation $\sigma(i)$

Experiment Setup

- Gnutella network simulation
 - 100 peers
- SIMILE and CACM bibliographic data-sets
 - 35 bibtexes per peer
 - Query sets of 20%, 50% and 85% similarity
- Comparison 3 search mechanisms
 - Flooding-based search (FD, 4 neighbors)
 - Feedback-based search (FB, 3 selected neighbors)
 - Random-based search (RD, 3 random neighbors)

Scheme Evaluation (1)

- Number of message per query
 - Reducing the cost of CBR processing
 - Reducing 1 selected neighbor
 - Cutting down 65% messages

Scheme Evaluation (2)

- Recall rate of retrieved bibtexes
 - Increasing the efficiency of the search mechanism
 - Reaching 77% of the recall rate limit with the query set of 50% similarity

Standing Issues

- Resource and query representation
 - Influencing similarity functions
 - Influencing peer learning and ranking processes
- Realistic fault data-sets
 - More complex than bibliographic data-sets
 - Case processing required

Thank you and Questions