Evaluation of 6LoWPAN Implementations

Kevin Dominik Korte

Jacobs University Bremen

October 20, 2009

It works, but ...

Outline

- Motivation
- 2 IEEE 802.15.4 and 6LoWPAN
- 6LoWPAN Implementations, Motes, Settings
- Interoperability Evaluation
- Conclusions

Motivation

 Goal: Qualitative comparison of 6LoWPAN Implementations

 Some demonstrations for interoperability testing have been shown at Arch Rocks San Francisco headquarters and at the 70th IETF meeting

 This work is the 1st published results considering full interoperability testing

Outline

- Motivation
- 2 IEEE 802.15.4 and 6LoWPAN
- 3 6LoWPAN Implementations, Motes, Settings
- 4 Interoperability Evaluation
- Conclusions

IEEE 802.15.4

- Low power, low cost radio interface
- Ranges of about 25-50 meters
- Requires mesh routing from the upper layer protocol
- Frame size 127 octets (excluding the frame headers)

octets: 2	1	0/2	0/2/8	0/2	0/2/8	variable	2
Frame control	Sequence number	Destination PAN identifier	Destination address	Source PAN identifier	Source address	Frame payload	Frame sequence check

Figure: IEEE 802.15.4 Header

General

IPv6 over Low Power Wireless Personal Area Networks

Adapts IPv6 to IEEE 802.15.4 devices

• IPv6 compatible

Without using too much resources

Dispatch Header and Type

 The dispatch selector is always the first header in a sequence of headers

 The dispatch header defines which header is the next in the sequence of headers

octets: 1	40	variable
Header type (IPv6 Dispatch)	IPv6 header	Payload

octets: 1	1	variable	variable
Header type (HC1 Dispatch)	HC1 encoding	IPv6 header fields	Payload

Compression

HC1 compression for the IPv6 header

Reduces the size in the best case by 39 octets

Only compresses link-local addresses

HC2 compression for the UDP header

Compression

Figure: Uncompressed and compressed 6LoWPAN header

Fragmentation

IPv6 minimum MTU 1280 octets

• IEEE 802.15.4 frame size 127 octets

6LoWPAN defines fragmentation and reassembly process

• 1 minute timeout for reassembly

• Often only 1 buffer available

Mesh Routing

• Maximum radio range 25m indoors / 50m outdoors

Widespread networks impossible without mesh routing

Intermediate motes act as routers

Multicasting

Used for discovering the IP to MAC mapping

802.15.4 does not support multicasting, only broadcasting is available

 All the tested 6LoWPAN implementations relied on 802.15.4 broadcasting

 There is a discussion in the IETF to replace broadcasting by a state full system

Outline

- Motivation
- 2 IEEE 802.15.4 and 6LoWPAN
- 3 6LoWPAN Implementations, Motes, Settings
- 4 Interoperability Evaluation
- Conclusions

Implementations

Table: List of 6LoWPAN Implementations

Name	OS / License	Hardware	Maintained
Jacobs	TinyOS / 3BSD	Telos B,	no
Berkeley IP	TinyOS / 3BSD	Telos B,	active
Arch Rock	TinyOS / EULA	Raven,	active
SICSlowpan	Contiki / 3BSD	Raven,	active
Sensinode	Own / EULA	Sensinode	active
Hitachi	Own / EULA	Renesas	unknown

TelosB

Figure: TelosB motes

- Texas Instruments MSP430
- 10k Ram
- 48k Flash Memory
- USB to Serial Port

Amtel Raven

Figure: Raven Motes, USB stick and Programming kit

- ATmega3290P for User IO operations
- ATmega1284P for the RF Stacks
- Serial LCD Display

Mote Setup

- Motes are placed next to each other
- Minimizes interference
- Maximum signal strength

Mote Setup Mesh Routing and Interoperability

Figure: Mote positions for mesh routing and interoperability

Outline

- Motivation
- IEEE 802.15.4 and 6LoWPAN
- 6LoWPAN Implementations, Motes, Settings
- Interoperability Evaluation
- Conclusions

Framing

 All the 6LoWPAN implementations utilize IEEE 802.15.4 frame format

- The Jacobs implementation uses the TinyOS Active Message format
 - First 6LoWPAN implementation for TinyOS
 - Active Message was the only available option for communication at that time
 - Active Message inserts an additional field between the IEEE802.15.4 header and the 6LoWPAN header

Dispatch Header

Well supported by all 6LoWPAN implementations

All Dispatch codes are supported

Compression Header

• HC1 is supported by all 6LoWPAN implementations

 HC2 for UDP is supported by Arch Rock only at the interoperability evaluation time

 Contiki and Arch Rock support not only the local link compression but also a global and state full compression

Fragmentation Header

Tested by sending ICMP echo requests of different sizes

Fragmentation is supported by all the 6LoWPAN implementations

 Drop rate of a big IPv6 packet is higher than the drop rate of the smaller packet with the same accumulative size

Mesh Routing

 Tested by moving two motes out of the radio range and placing a third in between

Supported by Berkeley IP, Contiki, and Arch Rock

 Drop rate higher than the accumulated drop rate of the two hops

Multicasting

 All the tested 6LoWPAN implementations relied on broadcasting for neighborhood discovery

Broadcasting is also used for mesh neighborhood discovery

Works reliable in the mote local range

Summary

Table: Implemented features: + means supported and tested, o means supported but not tested, - means not supported

Feature	Jacobs	Berkeley	Contiki	Arch Rock
Dispatch Header	+	+	+	+
Dispatch Type	+	+	+	+
Mesh Routing & Header	-	+	+	+
Multicasting Header	-	+	+	+
Multicasting	+	+	+	+

Summary

Table: Implemented features: + means supported and tested, o means supported but not tested, - means not supported

Feature	Jacobs	Berkeley	Contiki	Arch Rock
Fragmentation	+	+	+	+
HC1	+	+	+	+
HC2 for UDP	-	-	-	+
HC1g	-	-	0	0
ICMPv6 Echo	+	+	+	+

Outline

- Motivation
- IEEE 802.15.4 and 6LoWPAN
- 6LoWPAN Implementations, Motes, Settings
- 4 Interoperability Evaluation
- Conclusions

Conclusions

It works!

• For ArchRock, SICSlowpan, and Berkeley IP

Not for all channels

 Arch Rock seems to dislike Berkeley IP motes with smaller mote numbers

Conclusions

 The 6LoWPAN implementations are following the 6LoWPAN standard pretty well

The documentation provided for the 6LoWPAN implementations is inadequate

 Further investigation needed for fragmentation, mesh routing, mote and channel number selection

Quantitative performance analysis is a potential future work

THANK YOU

Questions?